Dina Halai
Royal National Orthopaedic Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dina Halai.
The Journal of Pathology | 2011
M Fernanda Amary; Krisztian Bacsi; Francesca Maggiani; Stephen Damato; Dina Halai; Fitim Berisha; Robin Pollock; Paul O'Donnell; Anita Grigoriadis; Tim C. Diss; Malihe Eskandarpour; Nadège Presneau; Pancras C.W. Hogendoorn; Andrew Futreal; Roberto Tirabosco; Adrienne M. Flanagan
Somatic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 occur in gliomas and acute myeloid leukaemia (AML). Since patients with multiple enchondromas have occasionally been reported to have these conditions, we hypothesized that the same mutations would occur in cartilaginous neoplasms. Approximately 1200 mesenchymal tumours, including 220 cartilaginous tumours, 222 osteosarcomas and another ∼750 bone and soft tissue tumours, were screened for IDH1 R132 mutations, using Sequenom® mass spectrometry. Cartilaginous tumours and chondroblastic osteosarcomas, wild‐type for IDH1 R132, were analysed for IDH2 (R172, R140) mutations. Validation was performed by capillary sequencing and restriction enzyme digestion. Heterozygous somatic IDH1/IDH2 mutations, which result in the production of a potential oncometabolite, 2‐hydroxyglutarate, were only detected in central and periosteal cartilaginous tumours, and were found in at least 56% of these, ∼40% of which were represented by R132C. IDH1 R132H mutations were confirmed by immunoreactivity for this mutant allele. The ratio of IDH1:IDH2 mutation was 10.6 : 1. No IDH2 R140 mutations were detected. Mutations were detected in enchondromas through to conventional central and dedifferentiated chondrosarcomas, in patients with both solitary and multiple neoplasms. No germline mutations were detected. No mutations were detected in peripheral chondrosarcomas and osteochondromas. In conclusion, IDH1 and IDH2 mutations represent the first common genetic abnormalities to be identified in conventional central and periosteal cartilaginous tumours. As in gliomas and AML, the mutations appear to occur early in tumourigenesis. We speculate that a mosaic pattern of IDH‐mutation‐bearing cells explains the reports of diverse tumours (gliomas, AML, multiple cartilaginous neoplasms, haemangiomas) occurring in the same patient. Copyright
Nature Genetics | 2013
Sam Behjati; Patrick Tarpey; Nadège Presneau; Susanne Scheipl; Nischalan Pillay; Peter Van Loo; David C. Wedge; Susanna L. Cooke; Gunes Gundem; Helen Davies; Serena Nik-Zainal; Sancha Martin; Stuart McLaren; Victoria Goodie; Ben Robinson; Adam Butler; Jon Teague; Dina Halai; Bhavisha Khatri; Ola Myklebost; Daniel Baumhoer; Gernot Jundt; Rifat Hamoudi; Roberto Tirabosco; M Fernanda Amary; P. Andrew Futreal; Michael R. Stratton; Peter J. Campbell; Adrienne M. Flanagan
It is recognized that some mutated cancer genes contribute to the development of many cancer types, whereas others are cancer type specific. For genes that are mutated in multiple cancer classes, mutations are usually similar in the different affected cancer types. Here, however, we report exquisite tumor type specificity for different histone H3.3 driver alterations. In 73 of 77 cases of chondroblastoma (95%), we found p.Lys36Met alterations predominantly encoded in H3F3B, which is one of two genes for histone H3.3. In contrast, in 92% (49/53) of giant cell tumors of bone, we found histone H3.3 alterations exclusively in H3F3A, leading to p.Gly34Trp or, in one case, p.Gly34Leu alterations. The mutations were restricted to the stromal cell population and were not detected in osteoclasts or their precursors. In the context of previously reported H3F3A mutations encoding p.Lys27Met and p.Gly34Arg or p.Gly34Val alterations in childhood brain tumors, a remarkable picture of tumor type specificity for histone H3.3 driver alterations emerges, indicating that histone H3.3 residues, mutations and genes have distinct functions.
Nature Genetics | 2011
M Fernanda Amary; Stephen Damato; Dina Halai; Malihe Eskandarpour; Fitim Berisha; Fiona Bonar; Stan McCarthy; Valeria Fantin; Kimberly Straley; Samira Lobo; Will Aston; Claire Green; Rosemary E. Gale; Roberto Tirabosco; Andrew Futreal; Peter J. Campbell; Nadège Presneau; Adrienne M. Flanagan
Ollier disease and Maffucci syndrome are characterized by multiple central cartilaginous tumors that are accompanied by soft tissue hemangiomas in Maffucci syndrome. We show that in 37 of 40 individuals with these syndromes, at least one tumor has a mutation in isocitrate dehydrogenase 1 (IDH1) or in IDH2, 65% of which result in a R132C substitution in the protein. In 18 of 19 individuals with more than one tumor analyzed, all tumors from a given individual shared the same IDH1 mutation affecting Arg132. In 2 of 12 subjects, a low level of mutated DNA was identified in non-neoplastic tissue. The levels of the metabolite 2HG were measured in a series of central cartilaginous and vascular tumors, including samples from syndromic and nonsyndromic subjects, and these levels correlated strongly with the presence of IDH1 mutations. The findings are compatible with a model in which IDH1 or IDH2 mutations represent early post-zygotic occurrences in individuals with these syndromes.
Nature Genetics | 2013
Sharon A. Savage; Lisa Mirabello; Zhaoming Wang; Julie M. Gastier-Foster; Richard Gorlick; Chand Khanna; Adrienne M. Flanagan; Roberto Tirabosco; Irene L. Andrulis; Jay S. Wunder; Nalan Gokgoz; Ana Patiño-García; Luis Sierrasesúmaga; Fernando Lecanda; Nilgun Kurucu; Inci Ilhan; Neriman Sari; Massimo Serra; Claudia M. Hattinger; Piero Picci; Logan G. Spector; Donald A. Barkauskas; Neyssa Marina; Silvia Regina Caminada de Toledo; Antonio Sergio Petrilli; Maria Fernanda Amary; Dina Halai; David Thomas; Chester W. Douglass; Paul S. Meltzer
Osteosarcoma is the most common primary bone malignancy of adolescents and young adults. To better understand the genetic etiology of osteosarcoma, we performed a multistage genome-wide association study consisting of 941 individuals with osteosarcoma (cases) and 3,291 cancer-free adult controls of European ancestry. Two loci achieved genome-wide significance: a locus in the GRM4 gene at 6p21.3 (encoding glutamate receptor metabotropic 4; rs1906953; P = 8.1 × 10−9) and a locus in the gene desert at 2p25.2 (rs7591996 and rs10208273; P = 1.0 × 10−8 and 2.9 × 10−7, respectively). These two loci warrant further exploration to uncover the biological mechanisms underlying susceptibility to osteosarcoma.
Nature Genetics | 2014
Sam Behjati; Patrick Tarpey; Helen Sheldon; Inigo Martincorena; Peter Van Loo; Gunes Gundem; David C. Wedge; Manasa Ramakrishna; Susanna L. Cooke; Nischalan Pillay; Hans Kristian Moen Vollan; Elli Papaemmanuil; Hans Koss; Tom D. Bunney; Claire Hardy; Olivia Joseph; Sancha Martin; Laura Mudie; Adam Butler; Jon Teague; Meena Patil; Graham Steers; Yu Cao; Curtis Gumbs; Davis R. Ingram; Alexander J. Lazar; Latasha Little; Harshad S. Mahadeshwar; Alexei Protopopov; Ghadah A. Al Sannaa
Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionizing radiation or chronic lymphoedema. Previous work has identified aberrant angiogenesis, including occasional somatic mutations in angiogenesis signaling genes, as a key driver of angiosarcoma. Here we employed whole-genome, whole-exome and targeted sequencing to study the somatic changes underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harbored predominantly truncating mutations in 10 of 39 tumors (26%). PLCG1, a signal transducer of tyrosine kinases, encoded a recurrent, likely activating p.Arg707Gln missense variant in 3 of 34 cases (9%). Overall, 15 of 39 tumors (38%) harbored at least one driver mutation in angiogenesis signaling genes. Our findings inform and reinforce current therapeutic efforts to target angiogenesis signaling in angiosarcoma.
The Journal of Pathology | 2011
Nadège Presneau; Asem Shalaby; Hongtao Ye; Nischalan Pillay; Dina Halai; Bernadine Idowu; Roberto Tirabosco; Duncan Whitwell; Ts Jacques; Lars Gunnar Kindblom; Silke Brüderlein; Peter Möller; Andreas Leithner; Bernadette Liegl; Fernanda Amary; Nicholas N. Athanasou; Pancras C.W. Hogendoorn; Fredrik Mertens; Karoly Szuhai; Adrienne M. Flanagan
A variety of analyses, including fluorescence in situ hybridization (FISH), quantitative PCR (qPCR) and array CGH (aCGH), have been performed on a series of chordomas from 181 patients. Twelve of 181 (7%) tumours displayed amplification of the T locus and an additional two cases showed focal amplification; 70/181 (39%) tumours were polysomic for chromosome 6, and 8/181 (4.5%) primary tumours showed a minor allelic gain of T as assessed by FISH. No germline alteration of the T locus was identified in non‐neoplastic tissue from 40 patients. Copy number gain of T was seen in a similar percentage of sacrococcygeal, mobile spine and base of skull tumours. Knockdown of T in the cell line, U‐CH1, which showed polysomy of chromosome 6 involving 6q27, resulted in a marked decrease in cell proliferation and morphological features consistent with a senescence‐like phenotype. The U‐CH1 cell line was validated as representing chordoma by the generation of xenografts, which showed typical chordoma morphology and immunohistochemistry in the NOD/SCID/interleukin 2 receptor [IL2r]
Nature Communications | 2013
Paul Guilhamon; Malihe Eskandarpour; Dina Halai; Gareth A. Wilson; Andrew Feber; Andrew E. Teschendorff; Valenti Gomez; Alexander Hergovich; Roberto Tirabosco; M Fernanda Amary; Daniel Baumhoer; Gernot Jundt; Mark T. Ross; Adrienne M. Flanagan; Stephan Beck
\gamma^{\rm{null}}
Nature Genetics | 2013
Patrick Tarpey; Sam Behjati; Susanna L. Cooke; Peter Van Loo; David C. Wedge; Nischalan Pillay; John Marshall; Sarah O'Meara; Helen Davies; Serena Nik-Zainal; David Beare; Adam Butler; John Gamble; Claire Hardy; Jonathon Hinton; Ming Ming Jia; Alagu Jayakumar; David Jones; Calli Latimer; Mark Maddison; Sancha Martin; Stuart McLaren; Andrew Menzies; Laura Mudie; Keiran Raine; Jon Teague; Jose M. C. Tubio; Dina Halai; Roberto Tirabosco; Fernanda Amary
mouse model. In conclusion, chromosomal aberrations resulting in gain of the T locus are common in sporadic chordomas and expression of this gene is critical for proliferation of chordoma cells in vitro. Copyright
The Journal of Pathology | 2011
Asem Shalaby; Nadège Presneau; Hongtao Ye; Dina Halai; Fitim Berisha; Bernadine Idowu; Andreas Leithner; Bernadette Liegl; Timothy Rw Briggs; Krisztian Bacsi; Lars Gunnar Kindblom; N A Athanasou; Maria Fernanda Amary; Pancras C.W. Hogendoorn; Roberto Tirabosco; Adrienne M. Flanagan
Isocitrate dehydrogenase (IDH) genes 1 and 2 are frequently mutated in acute myeloid leukaemia (AML), low-grade glioma, cholangiocarcinoma (CC) and chondrosarcoma (CS). For AML, low-grade glioma and CC, mutant IDH status is associated with a DNA hypermethylation phenotype, implicating altered epigenome dynamics in the aetiology of these cancers. Here we show that the IDH variants in CS are also associated with a hypermethylation phenotype and display increased production of the oncometabolite 2-hydroxyglutarate, supporting the role of mutant IDH-produced 2-hydroxyglutarate as an inhibitor of TET-mediated DNA demethylation. Meta-analysis of the acute myeloid leukaemia, low-grade glioma, cholangiocarcinoma and CS methylation data identifies cancer-specific effectors within the retinoic acid receptor activation pathway among the hypermethylated targets. By analysing sequence motifs surrounding hypermethylated sites across the four cancer types, and using chromatin immunoprecipitation and western blotting, we identify the transcription factor EBF1 (early B-cell factor 1) as an interaction partner for TET2, suggesting a sequence-specific mechanism for regulating DNA methylation.
Nature Genetics | 2012
Nischalan Pillay; Vincent Plagnol; Patrick Tarpey; Samira Lobo; Nadège Presneau; Karoly Szuhai; Dina Halai; Fitim Berisha; S. R. Cannon; Simon Mead; Dalia Kasperaviciute; Jutta Palmen; Philippa J. Talmud; Lars-Gunnar Kindblom; M Fernanda Amary; Roberto Tirabosco; Adrienne M. Flanagan
Chondrosarcoma is a heterogeneous collection of malignant bone tumors and is the second most common primary malignancy of bone after osteosarcoma. Recent work has identified frequent, recurrent mutations in IDH1 or IDH2 in nearly half of central chondrosarcomas. However, there has been little systematic genomic analysis of this tumor type, and, thus, the contribution of other genes is unclear. Here we report comprehensive genomic analyses of 49 individuals with chondrosarcoma (cases). We identified hypermutability of the major cartilage collagen gene COL2A1, with insertions, deletions and rearrangements identified in 37% of cases. The patterns of mutation were consistent with selection for variants likely to impair normal collagen biosynthesis. In addition, we identified mutations in IDH1 or IDH2 (59%), TP53 (20%), the RB1 pathway (33%) and Hedgehog signaling (18%).