Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dina M. Al-Mailem is active.

Publication


Featured researches published by Dina M. Al-Mailem.


SpringerPlus | 2013

Bias problems in culture-independent analysis of environmental bacterial communities: a representative study on hydrocarbonoclastic bacteria

H. Al-Awadhi; Narjis Dashti; Majida Khanafer; Dina M. Al-Mailem; N. Ali; Samir S. Radwan

Culture-dependent methods for bacterial community analysis are currently considered obsolete; therefore, molecular techniques are usually used instead. The results of the current study on hydrocarbonoclastic bacteria in various oily habitats in Kuwait showed however, that the bacterial identities varied dramatically according to the analytical approach used. For six desert and six seawater samples used in this study, the culture-independent and culture-dependent techniques each led to a unique bacterial composition. Problems related to the culture-dependent technique are well known. The results of the current study highlighted bias problems other than those already recorded in the literature for the molecular approaches. Thus, for example, in contrast to the culture-dependent technique, the primers used in the molecular approach preferentially amplified the 16S rDNAs of hydrocarbonoclastic bacteria in total genomic DNAs of all the studied environmental samples, and in addition, failed to reveal in any environmental sample members of the Actinobacteria. The primers used in the molecular approach also amplified certain “pure” 16S rDNAs, but failed to do so when these DNAs were in mixture. In view of these results, it is recommended that the two analytical approaches should be used simultaneously because their combined results would reflect the bacterial community composition more precisely than either of them can do alone.


International Biodeterioration & Biodegradation | 2000

Enhanced remediation of hydrocarbon contaminated desert soil fertilized with organic carbons

Samir S. Radwan; Dina M. Al-Mailem; I. El-Nemr; Samar Salamah

Fertilizing an oily desert soil sample with a mixture of glucose and peptone resulted in enhancing hydrocarbon disappearance in that soil. The magnitude of hydrocarbon attenuation was too high to be attributed to the nitrogen content of the added peptone alone. Fertilization with KNO3 containing the same amount of nitrogen as in peptone, brought about an enhanced hydrocarbon attenuation aect, but lower in magnitude than fertilization with glucose=peptone. Addition of glucose=peptone to a clean desert soil with hydrocarbon utilizing microorganisms resulted in dramatic increase in their numbers. After 13 days, the microorganisms had depleted all the added organic matter and their numbers decreased. In the oily desert soil, glucose=peptone addition also increased microbial numbers, but after utilization of the glucose=peptone, microbial numbers remained high and enhanced attenuation of hydrocarbons was found. The use of sea water instead of fresh water in these experiments blocked the hydrocarbon attenuation eect. c 2000 Elsevier Science Ltd. All rights reserved.


Archives of Microbiology | 2012

Indigenous hydrocarbon-utilizing bacterioflora in oil-polluted habitats in Kuwait, two decades after the greatest man-made oil spill

H. Al-Awadhi; Dina M. Al-Mailem; Narjes Dashti; Majida Khanafer; Samir S. Radwan

Kuwaiti habitats with two-decade history of oil pollution were surveyed for their inhabitant oil-utilizing bacterioflora. Seawater samples from six sites along the Kuwaiti coasts of the Arabian Gulf and desert soil samples collected from seven sites all over the country harbored oil-utilizing bacteria whose numbers made up 0.0001–0.01% of the total, direct, microscopic counts. The indigenous bacterioflora in various sites were affiliated to many species. This was true when counting was made on nitrogen-containing and nitrogen-free media. Seawater samples harbored species belonging predominantly to the Gammaproteobacteria and desert soil samples contained predominantly Actinobacteria. Bacterial species that grew on the nitrogen-free medium and that represented a considerable proportion of the total in all individual bacterial consortia were diazotrophic. They gave positive acetylene-reduction test and possessed the nifH genes in their genomes. Individual representative species could utilize a wide range of aliphatic and aromatic hydrocarbons, as sole sources of carbon and energy. Quantitative determination showed that the individual species consumed crude oil, n-octadecane and phenanthrene, in batch cultures. It was concluded that the indigenous microflora could be involved in bioremediation programs without bioaugmentation or nitrogen fertilization. Irrigation would be the most important practice in bioremediation of the polluted soil desert areas.


Bioresource Technology | 2010

Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology.

Dina M. Al-Mailem; N.A. Sorkhoh; M. Marafie; H. Al-Awadhi; M. Eliyas; Samir S. Radwan

The rhizosphere and phyllosphere of the halophyte Halonemum strobilaceum naturally inhabiting hypersaline coastal areas of the Arabian Gulf harbor up to 8.1 x 10(4)g(-1) and 3 x 10(2)g(-1), respectively, of extremely halophilic oil-utilizing microorganisms. Such organisms were 14- to 38-fold more frequent in the rhizosphere than in the plant-free soil. Frequent genera in the rhizosphere were affiliated to the archaea Halobacterium sp. and Halococcus sp., the firmicute Brevibacillus borstenlensis, and the proteobacteria Pseudoalteromonas ruthenica and Halomonas sinaensis. The phyllospheric microflora consisted of the dimorphic yeast Candida utilis and the two proteobacteria Ochrobactrum sp. and Desulfovibrio sp. Individual strains grew on a range of pure aliphatic and aromatic hydrocarbons, as sole sources of carbon and energy. All the strains, except C. utilis which could not tolerate salinities >2M NaCl, grew also in media with salinities ranging between 1 and 4M NaCl, with optimum growth between 1 and 2M NaCl. With the exception of the two archaeal genera, all isolates could grow in a nitrogen-free medium. The total rhizospheric and phyllospheric microbial consortia could attenuate crude oil in complete (nitrogen-containing) medium, but also equally well in a nitrogen-free medium. It was concluded that H. strobilaceum could be a valuable halophyte for phytoremediation of oil-polluted hypersaline environments via rhizosphere technology.


Applied Biochemistry and Biotechnology | 2014

Bioremediation of Hydrocarbons Contaminating Sewage Effluent Using Man-made Biofilms: Effects of Some Variables

Dina M. Al-Mailem; Mayada K. Kansour; Samir S. Radwan

Biofilm samples were established on glass slides by submerging them in oil-free and oil-containing sewage effluent for a month. In batch cultures, such biofilms were effective in removing crude oil, pure n-hexadecane, and pure phenanthrene contaminating sewage effluent. The amounts of the removed hydrocarbons increased with increasing biofilm surface area exposed to the effluent. On the other hand, addition of the reducing agent thioglycollate dramatically inhibited the hydrocarbon bioremediation potential of the biofilms. The same biofilm samples removed contaminating hydrocarbons effectively in three successive batch bioremediation cycles but started to become less effective in the cycles thereafter, apparently due to mechanical biofilm loss during successive transfers. As major hydrocarbonoclastic bacteria, the biofilms harbored species belonging to the genera Pseudomonas, Microvirga, Zavarzinia, Mycobacterium, Microbacterium, Stenotrophomonas, Gordonia, Bosea, Sphingobium, Brachybacterium, and others. The nitrogen fixer Azospirillum brasilense and the microalga Ochromonas distigma were also present; they seemed to enrich the biofilms, with nitrogenous compounds and molecular oxygen, respectively, which are known to enhance microbiological hydrocarbon degradation. It was concluded that man-made biofilms based upon sewage microflora are promising tools for bioremediation of hydrocarbons contaminating sewage effluent.


Microbial Ecology | 2014

Culture-Dependent and Culture-Independent Analysis of Hydrocarbonoclastic Microorganisms Indigenous to Hypersaline Environments in Kuwait

Dina M. Al-Mailem; M. Eliyas; Majeda Khanafer; Samir S. Radwan

The halophilic, hydrocarbonoclastic bacteria and archaea inhabiting two hypersaline coastal areas in Kuwait, one in the north and the other in the south, were counted and characterized. Environmental parameters in both areas were similar, with the exception of the soil organic carbon content, which was in the north higher than in the south. The hydrocarbonoclastic bacterial and haloarchaeal numbers and identities as analyzed using nutrient media of various salinities were similar in soil and pond water samples from both areas. The bacterial species recorded by this culture-dependent method belonged to the genera Halomonas, Chromohalobacter, Marinobacter, Exiguobacterium, Stenotrophomonas, Pseudomonas, Salinivibrio, and Bacillus. The haloarchaeal species belonged to the genera Haloferax and Halobacterium. When analyzed by fingerprinting of their amplified genomic DNA followed by sequencing of the electrophoresis-resolved bands, the same environmental samples revealed a different microbial composition. Bacterial phylotypes recorded by this culture-independent method were affiliated with the genera Ochrobactrum, Stenotrophomonas, Rhodococcus, and “Halomicrobium,” whereas the archaeal phylotypes were affiliated with Halorussus, Halomicrobium, and Halorientalis. The observed diversity and composition similarity of the hydrocarbonocalastic microflora in both hypersaline areas suggest an effective potential for oil mineralization therein. This potential has been confirmed experimentally.


Ecotoxicology and Environmental Safety | 2010

Phytoremediation of mercury in pristine and crude oil contaminated soils: Contributions of rhizobacteria and their host plants to mercury removal.

N.A. Sorkhoh; N. Ali; H. Al-Awadhi; Narjes Dashti; Dina M. Al-Mailem; M. Eliyas; Samir S. Radwan

The rhizospheric soils of three tested legume crops: broad beans (Vicia faba), beans (Phaseolus vulgaris) and pea (Pisum sativum), and two nonlegume crops: cucumber (Cucumis sativus) and tomato, (Lycopersicon esculentum) contained considerable numbers (the magnitude of 10(5)g(-1) soil) of bacteria with the combined potential for hydrocarbon-utilization and mercury-resistance. Sequencing of the 16S rRNA coding genes of rhizobacteria associated with broad beans revealed that they were affiliated to Citrobacter freundii, Enterobacter aerogenes, Exiquobacterium aurantiacum, Pseudomonas veronii, Micrococcus luteus, Brevibacillus brevis, Arthrobacter sp. and Flavobacterium psychrophilum. These rhizobacteria were also diazotrophic, i.e. capable of N(2) fixation, which makes them self-sufficient regarding their nitrogen nutrition and thus suitable remediation agents in nitrogen-poor soils, such as the oily desert soil. The crude oil attenuation potential of the individual rhizobacteria was inhibited by HgCl(2), but about 50% or more of this potential was still maintained in the presence of up to 40 mgl(-1) HgCl(2). Rhizobacteria-free plants removed amounts of mercury from the surrounding media almost equivalent to those removed by the rhizospheric bacterial consortia in the absence of the plants. It was concluded that both the collector plants and their rhizospheric bacterial consortia contributed equivalently to mercury removal from soil.


Extremophiles | 2008

The 2-oxoacid dehydrogenase multienzyme complex of Haloferax volcanii

Dina M. Al-Mailem; David W. Hough; Michael J. Danson

Those aerobic archaea whose genomes have been sequenced possess four adjacent genes that, by sequence comparisons with bacteria and eukarya, appear to encode the component enzymes of a 2-oxoacid dehydrogenase multienzyme complex. However, no catalytic activity of any such complex has ever been detected in the archaea. In Thermoplasma acidophilum, evidence has been presented that the heterologously expressed recombinant enzyme possesses activity with the branched chain 2-oxoacids and, to a lesser extent, with pyruvate. In the current paper, we demonstrate that in Haloferax volcanii the four genes are transcribed as an operon in vivo. However, no functional complex or individual enzyme, except for the dihydrolipoamide dehydrogenase component, could be detected in this halophile grown on a variety of carbon sources. Dihydrolipoamide dehydrogenase is present at low catalytic activities, the level of which is increased three to fourfold when Haloferax volcanii is grown on the branched-chain amino acids valine, leucine and isoleucine.


Scientific Reports | 2017

Calcium (II) - and dipicolinic acid mediated-biostimulation of oil-bioremediation under multiple stresses by heat, oil and heavy metals

Samir S. Radwan; Dina M. Al-Mailem; Mayada K. Kansour

The oil-producing Arabian Gulf states have hot summer seasons of about 7-month in length. Therefore, environmental oil spills should be bioremediated by the activity of indigenous, hydrocarbonoclastic (hydrocarbon-degrading) microorganisms with optimum growth at about 50 °C. Soils in such arid countries harbor thermophilic bacteria, whose oil-consumption potential is enhanced by calcium (II) - and dipicolinic acid (DPA)-supplement. Those organisms are, however, subjected to additional stresses including toxic effects of heavy metals that may be associated with the spilled oil. Our study highlighted the resistance of indigenous, thermophilic isolates to the heavy metals, mercury (II), cadmium (II), arsenic (II) and lead (II) at 50 °C. We also detected the uptake of heavy metals by 15 isolates at 50 °C, and identified the merA genes coding for Hg2+-resistance in 4 of the studied Hg2+-resistant isolates. Hg2+ was the most toxic metal and the metal toxicity was commonly higher in the presence of oil. The addition of Ca2+ and DPA enhanced the Hg2+-resistance among most of the isolates at 50 °C. Crude oil consumption at 50 °C by 4 selected isolates was inhibited by the tested heavy metals. However, Ca2+ and DPA limited this inhibition and enhanced oil-consumption, which exceeded by far the values in the control cultures.


Frontiers in Microbiology | 2018

Ferric Sulfate and Proline Enhance Heavy-Metal Tolerance of Halophilic/Halotolerant Soil Microorganisms and Their Bioremediation Potential for Spilled-Oil Under Multiple Stresses

Dina M. Al-Mailem; M. Eliyas; Samir S. Radwan

The aim of this study was to explore the heavy-metal resistance and hydrocarbonoclastic potential of microorganisms in a hypersaline soil. For this, hydrocarbonoclastic microorganisms were counted on a mineral medium with oil vapor as a sole carbon source in the presence of increasing concentrations of ZnSO4, HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4. The colony-forming units counted decreased in number from about 150 g-1 on the heavy-metal-free medium to zero units on media with 40–100 mg l-1 of HgCl2, CdSO4, PbNO3, or Na2HAsO4. On media with CuSO4 or ZnSO4 on the other hand, numbers increased first reaching maxima on media with 50 mg l-1 CuSO4 and 90 mg l-1 ZnSO4. Higher concentrations reduced the numbers, which however, still remained considerable. Pure microbial isolates in cultures tolerated 200–1600 mg l-1 of HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4 in the absence of crude oil. In the presence of oil vapor, the isolates tolerated much lower concentrations of the heavy metals, only 10–80 mg l-1. The addition of 10 Fe2(SO4)3 and 200 mg l-1 proline (by up to two- to threefold) enhanced the tolerance of several isolates to heavy metals, and consequently their potential for oil biodegradation in their presence. The results are useful in designing bioremediation technologies for oil spilled in hypersaline areas.

Collaboration


Dive into the Dina M. Al-Mailem's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge