Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dina Ripken is active.

Publication


Featured researches published by Dina Ripken.


International Journal of Obesity | 2015

Ileal brake activation: Macronutrient-specific effects on eating behavior?

M. van Avesaat; Freddy J. Troost; Dina Ripken; Henk F. J. Hendriks; A. A. M. Masclee

Background:Activation of the ileal brake, by infusing lipid directly into the distal part of the small intestine, alters gastrointestinal (GI) motility and inhibits food intake. The ileal brake effect on eating behavior of the other macronutrients is currently unknown.Objective:The objective of this study was to investigate the effects of ileal infusion of sucrose and casein on food intake, release of GI peptides, gastric emptying rate and small-bowel transit time with safflower oil as positive control.Design:This randomized, single-blind, crossover study was performed in 13 healthy subjects (6 male; mean age 26.4±2.9 years; mean body mass index 22.8±0.4 kg m−2) who were intubated with a naso–ileal catheter. Thirty minutes after the intake of a standardized breakfast, participants received an ileal infusion, containing control ((C) saline), safflower oil ((HL) 51.7 kcal), low-dose casein ((LP) 17.2 kcal) or high-dose casein ((HP) 51.7 kcal), low-dose sucrose ((LC) 17.2 kcal) and high-dose sucrose ((HC) 51.7 kcal), over a period of 90 min. Food intake was determined during an ad libitum meal. Visual analogue score questionnaires for hunger and satiety and blood samples were collected at regular intervals.Results:Ileal infusion of lipid, protein and carbohydrate resulted in a significant reduction in food intake compared with control (HL: 464.3±90.7 kcal, P<0.001; HP: 458.0±78.6 kcal, P<0.005; HC: 399.0±57.0 kcal, P<0.0001 vs control: 586.7±70.2 kcal, P<0.001, respectively). A reduction in energy intake was still apparent when the caloric amount of infused nutrients was added to the amount eaten during the ad libitum meal.Secretion of cholecystokinin and peptide YY but not of glucagon-like peptide-1 (7–36) was increased during ileal perfusion of fat, carbohydrates and protein. During ileal perfusion of all macronutrients, a delay in gastric emptying and intestinal transit was observed, but differences were not significant compared with control.Conclusion:Apart from lipids, also sucrose and casein reduce food intake on ileal infusion, thereby activating the ileal brake. In addition to food intake, also satiety and GI peptide secretion were affected.


The American Journal of Clinical Nutrition | 2015

Intraduodenal infusion of a combination of tastants decreases food intake in humans

Mark van Avesaat; Freddy J. Troost; Dina Ripken; Jelmer Peters; Henk F. J. Hendriks; Ad Masclee

BACKGROUND Taste receptors are expressed not only in taste buds but also in the gastrointestinal tract. It has been hypothesized that these receptors may play a role in satiety and food intake. OBJECTIVE This study investigated the effect of intraduodenal tastant infusions (bitter, sweet, and umami) on food intake, hunger and fullness, gastrointestinal symptoms, and gastrointestinal peptide release. DESIGN Fifteen healthy volunteers [6 male; mean ± SEM age: 23.9 ± 2.0 y; mean ± SEM body mass index (in kg/m(2)): 22.4 ± 0.3] received 5 treatments in a double-blind, randomized, placebo-controlled crossover design. Test days started with the insertion of a nasoduodenal catheter followed by a standardized liquid breakfast. Participants received an intraduodenal infusion 150 min after breakfast, containing quinine (bitter), rebaudioside A (sweet), monosodium glutamate (umami), a combination of the 3 tastants, or placebo (tap water) over a period of 60 min. Food intake was measured during an ad libitum meal, and visual analog scales were used to monitor gastrointestinal complaints and hunger and fullness scores. Blood samples were drawn at regular intervals for cholecystokinin, glucagon-like peptide 1 (GLP-1), and peptide YY (PYY) analysis. RESULTS Infusion of the combination of tastants substantially decreased food intake (422 ± 97 compared with 486 ± 104 kcal for placebo, P < 0.05), whereas both a combination of tastants and umami decreased hunger scores compared with placebo. No change in cholecystokinin, GLP-1, or PYY concentrations was observed during the infusions. Intraduodenal infusions of the tastants did not result in gastrointestinal symptoms. CONCLUSIONS Intraduodenal infusion of umami and a combination of tastants inhibits feelings of hunger, but only the latter also reduces food intake. However, these alterations were not accompanied by changes in the plasma concentrations of the gut-derived peptides cholecystokinin, GLP-1, or PYY. This trial was registered at clinicaltrials.gov as NCT01956838.


Physiology & Behavior | 2015

Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy

Dina Ripken; N. van der Wielen; J. van der Meulen; T. Schuurman; Renger F. Witkamp; Henk F. J. Hendriks; S.J. Koopmans

The vagal nerve and gut hormones CCK and GLP-1 play important roles in the control of food intake. However, it is not clear to what extent CCK and GLP-1 increase satiation by stimulating receptors located on abdominal vagal nerve endings or via receptors located elsewhere. This study aimed to further explore the relative contribution of the abdominal vagal nerve in mediating the satiating effects of endogenous CCK and GLP-1. Total subdiaphragmatic vagotomy or sham operation was combined with administration of CCK1 and GLP-1 receptor antagonists devazepide and exendin (9-39) in 12 pigs, applying an unbalanced Latin Square within-subject design. Furthermore, effects of vagotomy on preprandial and postprandial acetaminophen absorption, glucose, insulin, GLP-1 and CCK plasma concentrations were investigated. Ad libitum liquid meal intake (mean±SEM) was similar in sham and vagotomized pigs (4180±435 and 3760±810 g/meal). Intake increased by about 20% after blockade of CCK1 receptors, independently of the abdominal vagal nerve. Food intake did not increase after blockade of GLP-1 receptors. Blockade of CCK1 and GLP-1 receptors increased circulating CCK and GLP-1 concentrations in sham pigs only, suggesting the existence of a vagal reflex mechanism in the regulation of plasma CCK1 and GLP-1 concentrations. Vagotomy decreased acetaminophen absorption and changed glucose, insulin, CCK and GLP-1 concentrations indicating a delay in gastric emptying. Our data show that at liquid feeding, satiation is decreased effectively by pharmacological blockade of CCK1 receptors. We conclude that regulation of liquid meal intake appears to be primarily regulated by CCK1 receptors not located on abdominal vagal nerve endings.


PLOS ONE | 2015

Effects of Mood Inductions by Meal Ambiance and Moderate Alcohol Consumption on Endocannabinoids and N-Acylethanolamines in Humans: A Randomized Crossover Trial

Ilse C. Schrieks; Dina Ripken; A. Stafleu; Renger F. Witkamp; Henk F. J. Hendriks

Background The endocannabinoid system is suggested to play a regulatory role in mood. However, the response of circulating endocannabinoids (ECs) to mood changes has never been tested in humans. In the present study, we examined the effects of mood changes induced by ambiance and moderate alcohol consumption on plasma ECs 2-arachidonoylglycerol (2-AG), anandamide (AEA), and some N-acylethanolamine (NAE) congeners in humans. Methods Healthy women (n = 28) participated in a randomized cross-over study. They consumed sparkling white wine (340 mL; 30 g alcohol) or alcohol-free sparkling white wine (340 mL; <2 g alcohol) as part of a standard evening meal in a room with either a pleasant or an unpleasant ambiance. Results Plasma concentrations of palmitoylethanolamide (PEA) and stearoylethanolamide (SEA) increased after 30 min in the unpleasant ambiance, while they decreased in the pleasant ambiance. Changes in ECs and their NAE congeners correlated with mood states, such as happiness and fatigue, but in the pleasant ambiance without alcohol only. ECs and their NAE congeners were correlated with serum free fatty acids and cortisol. Conclusion This is the first human study to demonstrate that plasma NAEs are responsive to an unpleasant meal ambiance. Furthermore, associations between mood states and ECs and their NAE congeners were observed. Trial Registration Clinicaltrials.gov NCT01426022


Journal of Nutritional Biochemistry | 2016

Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

Dina Ripken; Nikkie van der Wielen; Heleen M. Wortelboer; Jocelijn Meijerink; Renger F. Witkamp; Henk F. J. Hendriks

Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process.


International Journal of Obesity | 2017

Small intestinal protein infusion in humans: Evidence for a location-specific gradient in intestinal feedback on food intake and GI peptide release

M. van Avesaat; Dina Ripken; Henk F. J. Hendriks; Ad Masclee; Freddy J. Troost

BACKGROUND:Protein infusion in the small intestine results in intestinal brake activation: a negative feedback mechanism that may be mediated by the release of gastrointestinal peptides resulting in a reduction in food intake. It has been proposed that duodenum, jejunum and ileum may respond differently to infused proteins.OBJECTIVE:To investigate differences in ad libitum food intake, feelings of hunger and satiety and the systemic levels of cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY), glucose and insulin after intraduodenal, intrajejunal and intraileal protein infusion.METHODS:Fourteen subjects (four male, mean age: 23±2.1 years, mean body mass index: 21.6±1.8 kg m−2) were intubated with a naso-ileal catheter in this double-blind, randomized, placebo-controlled crossover study. Test days (four in total, executed on consecutive days) started with the ingestion of a standardized breakfast, followed by the infusion of 15 g of protein in the duodenum, jejunum or ileum over a period of 60 min. Food intake was measured by offering an ad libitum meal and Visual Analogue Scale (VAS) scores were used to assess feelings of hunger and satiety. Blood samples were drawn at regular intervals for CCK, GLP-1, PYY, glucose and insulin analyses.RESULTS:Intraileal protein infusion decreased ad libitum food intake compared with both intraduodenal and placebo infusion (ileum: 628.5±63 kcal vs duodenum: 733.6±50 kcal, P<0.01 and placebo: 712.2±53 kcal, P<0.05). GLP-1 concentrations were increased after ileal infusion compared with jejunal and placebo infusion, whereas CCK concentrations were only increased after intraileal protein infusion compared with placebo. None of the treatments affected VAS scores for hunger and satiety nor plasma concentrations of PYY and glucose.CONCLUSIONS:Protein infusion into the ileum decreases food intake during the next meal compared with intraduodenal infusion, whereas it increases systemic levels of GLP-1 compared with protein infusion into the jejunum and placebo respectively.


Journal of Agricultural and Food Chemistry | 2014

Steviol glycoside rebaudioside A induces glucagon-like peptide-1 and peptide YY release in a porcine ex vivo intestinal model

Dina Ripken; N. van der Wielen; Heleen M. Wortelboer; Jocelijn Meijerink; Renger F. Witkamp; Henk F. J. Hendriks


Clinical Nutrition | 2017

Intraileal casein infusion increases plasma concentrations of amino acids in humans: A randomized cross over trial

Dina Ripken; Mark van Avesaat; Freddy J. Troost; Ad Masclee; Renger F. Witkamp; Henk F. J. Hendriks


Gastroenterology | 2017

A Double-Blind Randomized Cross-Over Study to Investigate the Effect of an Encapsulated Nutrient Mixture on Food Intake and Satiety

Annick M. E. Alleleyn; Mark van Avesaat; Dina Ripken; Henk F. J. Hendriks; Sinéad Bleiel; Freddy J. Troost; Ad Masclee


The American Journal of Clinical Nutrition | 2016

Reply to M Mehrdad

Mark van Avesaat; Freddy J. Troost; Dina Ripken; Henk F. J. Hendriks; Ad Masclee

Collaboration


Dive into the Dina Ripken's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renger F. Witkamp

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilse C. Schrieks

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jocelijn Meijerink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

N. van der Wielen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

S.J. Koopmans

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge