Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dina Ron is active.

Publication


Featured researches published by Dina Ron.


Cell Biology International | 1995

Keratinocyte growth factor

Jeffrey S. Rubin; Donald P. Bottaro; Marcio Chedid; Toru Miki; Dina Ron; Hyae-Gyeong Cheon; William G. Taylor; Emma Fortney; Hiromi Sakata; Paul W. Finch; William J. LaRochelle

Keratinocyte growth factor (KGF) is a member of the heparin‐binding fibroblast growth factor family (FGF‐7) with a distinctive pattern of target‐cell specificity. Studies performed in cell culture suggested that KGF was mitogenically active only on epithelial cells, albeit from a variety of tissues. In contrast, KGF was produced solely by cells of mesenchymal origin, leading to the hypothesis that it might function as a paracrine mediator of mesenchymal‐epithelial communication. Biochemical analysis and molecular cloning established that the KGF receptor (KGFR) was a tyrosine kinase isoform encoded by the fgfr‐2 gene. Many detailed investigations of KGF and KGFR expression in whole tissue and cell lines largely substantiated the pattern initially perceived in vitro of mesenchymal and epithelial distribution, respectively. Moreover, functional assays in organ culture and in vivo and studies of KGF regulation by sex sterorid hormones reinforced the idea that KGF acts predominantly on epithelial cells to elicit a variety of responses including proliferation, migration and morphogenesis.


Cancer and Metastasis Reviews | 1996

Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor

Israel Vlodavsky; Hua-Quan Miao; Benjamin Medalion; Pamela Danagher; Dina Ron

Heparan sulfate proteoglycans (HSPGs) are ubiquitous macromolecules associated with the cell surface and extracellular matrix (ECM) of a wide range of cells of vertebrate and invertebrate tissues [1,2]. The basic HSPG structure consists of a protein core to which several linear heparan sulfate (HS) chains are covalently attached. The polysaccharide chains are typically composed of repeating hexuronic and D-glucosamine disaccharide units that are substituted to a varying extent with N- and O-linked sulfate moieties and N-linked acetyl groups [1,2]. Beside serving as a scaffold for the attachment of various ECM components (e.g., collagen, laminin, fibronectin), the binding of HS to certain proteins has been suggested to induce a conformational change which may lead to the exposure of novel reactive determinants or conversely stabilize an innert protein configuration [1–4]. Of particular significance is the interaction of HS with fibroblast growth factors (FGFs), mediating their sequestration, stabilization and high affinity receptor binding and signaling [3–7]. Cellular responses to FGFs may hence be modulated by metabolic inhibitors of HS synthesis and sulfation, HS-degrading enzymes, and synthetic mimetics of heparin/HS. In the present review we focus on the involvement of HS in basic FGF (bFGF) receptor binding and mitogenic activity and its modulation by species of heparin, HS, and synthetic polyanionic ‘heparin-mimicking’ compounds. The results are discussed in relation to the current thoughts on the dual involvement of low and high affinity receptor sites in the growth promoting and angiogenic activities of bFGF and other heparin-binding growth factors.


Journal of Biological Chemistry | 1999

Glypican-1 Is a VEGF165 Binding Proteoglycan That Acts as an Extracellular Chaperone for VEGF165

Stela Gengrinovitch; Bluma Berman; Guido David; Larry Witte; Gera Neufeld; Dina Ron

Glypican-1 is a member of a family of glycosylphosphatidylinositol anchored cell surface heparan sulfate proteoglycans implicated in the control of cellular growth and differentiation. The 165-amino acid form of vascular endothelial growth factor (VEGF165) is a mitogen for endothelial cells and a potent angiogenic factor in vivo. Heparin binds to VEGF165 and enhances its binding to VEGF receptors. However, native HSPGs that bind VEGF165 and modulate its receptor binding have not been identified. Among the glypicans, glypican-1 is the only member that is expressed in the vascular system. We have therefore examined whether glypican-1 can interact with VEGF165. Glypican-1 from rat myoblasts binds specifically to VEGF165 but not to VEGF121. The binding has an apparent dissociation constant of 3 × 10−10 m. The binding of glypican-1 to VEGF165 is mediated by the heparan sulfate chains of glypican-1, because heparinase treatment abolishes this interaction. Only an excess of heparin or heparan sulfates but not other types of glycosaminoglycans inhibited this interaction. VEGF165 interacts specifically not only with rat myoblast glypican-1 but also with human endothelial cell-derived glypican-1. The binding of125I-VEGF165 to heparinase-treated human vascular endothelial cells is reduced following heparinase treatment, and addition of glypican-1 restores the binding. Glypican-1 also potentiates the binding of 125I-VEGF165 to a soluble extracellular domain of the VEGF receptor KDR/flk-1. Furthermore, we show that glypican-1 acts as an extracellular chaperone that can restore the receptor binding ability of VEGF165, which has been damaged by oxidation. Taken together, these results suggest that glypican-1 may play an important role in the control of angiogenesis by regulating the activity of VEGF165, a regulation that may be critical under conditions such as wound repair, in which oxidizing agents that can impair the activity of VEGF are produced, and in situations were the concentrations of active VEGF are limiting.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors.

Brian K. Yeh; Makoto Igarashi; Anna V. Eliseenkova; Alexander N. Plotnikov; Ifat Sher; Dina Ron; Stuart A. Aaronson; Moosa Mohammadi

Binding specificity between fibroblast growth factors (FGFs) and their receptors (FGFRs) is essential for mammalian development and is regulated primarily by two alternatively spliced exons, IIIb (“b”) and IIIc (“c”), that encode the second half of Ig-like domain 3 (D3) of FGFRs. FGF7 and FGF10 activate only the b isoform of FGFR2 (FGFR2b). Here, we report the crystal structure of the ligand-binding portion of FGFR2b bound to FGF10. Unique contacts between divergent regions in FGF10 and two b-specific loops in D3 reveal the structural basis by which alternative splicing provides FGF10-FGFR2b specificity. Structure-based mutagenesis of FGF10 confirms the importance of the observed contacts for FGF10 biological activity. Interestingly, FGF10 binding induces a previously unobserved rotation of receptor Ig domain 2 (D2) to introduce specific contacts with FGF10. Hence, both D2 and D3 of FGFR2b contribute to the exceptional specificity between FGF10 and FGFR2b. We propose that ligand-induced conformational change in FGFRs may also play an important role in determining specificity for other FGF-FGFR complexes.


Journal of Biological Chemistry | 2005

Interactions of Multiple Heparin Binding Growth Factors with Neuropilin-1 and Potentiation of the Activity of Fibroblast Growth Factor-2

David C. West; Chris G. Rees; Laurence Duchesne; Susannah J. Patey; Jeremy E. Turnbull; Maryse Delehedde; Christian W. Heegaard; Fabrice Allain; Christophe Vanpouille; Dina Ron; David G. Fernig

The hypothesis that neuropilin-1 (Npn-1) may interact with heparin-binding proteins other than vascular endothelial growth factor has been tested using an optical biosensor-based binding assay. The results show that fibroblast growth factor (FGF) 1, 2, 4, and 7, FGF receptor 1, hepatocyte growth factor/scatter factor (HGF/SF), FGF-binding protein, normal protease sensitive form of prion protein, antithrombin III, and Npn-1 itself are all able to interact with Npn-1 immobilized on the sensor surface. FGF-2, FGF-4, and HGF/SF are also shown to interact with Npn-1 in a solution assay. Moreover, these protein-protein interactions are dependent on the ionic strength of the medium and are inhibited by heparin, and the kinetics of binding of FGF-2, FGF-4 and HGF/SF to Npn-1 are characterized by fast association rate constants (270,000–1,600,000 m–1 s–1). These results suggest that Npn-1 possesses a “heparin” mimetic site that is able to interact at least in part through ionic bonding with the heparin binding site on many of the proteins studied. Npn-1 was also found to potentiate the growth stimulatory activity of FGF-2 on human umbilical vein endothelial cells, indicating that Npn-1 may not just bind but also regulate the activity of heparin-binding proteins.


EXS | 1995

Keratinocyte growth factor as a cytokine that mediates mesenchymal-epithelial interaction

Jeffrey S. Rubin; Donald P. Bottaro; Marcio Chedid; Toru Miki; Dina Ron; Gerald R. Cunha; Paul W. Finch

Keratinocyte growth factor (KGF) is a member of the heparin-binding fibroblast growth factor family (FGF-7) with a distinctive pattern of target-cell specificity. Studies performed in cell culture suggested that KGF was mitogenically active only on epithelial cells, though from a variety of tissues. In contrast, KGF was produced solely by cells of mesenchymal origin, leading to the hypothesis that it might function as a paracrine mediator of mesenchymal-epithelial communication. Biochemical analysis and molecular cloning established that the KGF receptor (KGFR) was a tyrosine kinase isoform encoded by the fgfr-2 gene. Many detailed investigations of KGF and KGFR expression in whole tissue and cell lines largely substantiated the pattern initially perceived in vitro of mesenchymal and epithelial distribution, respectively. Moreover, functional assays in organ culture and in vivo and analysis of agents regulating KGF expression reinforced the idea that KGF acts predominantly on epithelial cells. While the data do not implicate a KGF autocrine loop in neoplasia, paracrine sources of factor or ligand-independent signaling by the KGFR might contribute to malignancy. Alternatively, because of its differentiation-promoting effects, KGF may retard processes that culminate in uncontrolled cell growth.


Biochemical Journal | 2005

Fibroblast growth factors share binding sites in heparan sulphate

Johan Kreuger; Per Jemth; Emil Sanders-Lindberg; Liat Eliahu; Dina Ron; Claudio Basilico; Markku Salmivirta; Ulf Lindahl

HS (heparan sulphate) proteoglycans bind secreted signalling proteins, including FGFs (fibroblast growth factors) through their HS side chains. Such chains contain a wealth of differentially sulphated saccharide epitopes. Whereas specific HS structures are commonly believed to modulate FGF-binding and activity, selective binding of defined HS epitopes to FGFs has generally not been demonstrated. In the present paper, we have identified a series of sulphated HS octasaccharide epitopes, derived from authentic HS or from biosynthetic libraries that bind with graded affinities to FGF4, FGF7 and FGF8b. These HS species, along with previously identified oligosaccharides that interact with FGF1 and FGF2, constitute the first comprehensive survey of FGF-binding HS epitopes based on carbohydrate sequence analysis. Unexpectedly, our results demonstrate that selective modulation of FGF activity cannot be explained in terms of binding of individual FGFs to specific HS target epitopes. Instead, different FGFs bind to identical HS epitopes with similar relative affinities and low selectivity, such that the strength of these interactions increases with increasing saccharide charge density. We conclude that FGFs show extensive sharing of binding sites in HS. This conclusion challenges the current notion of specificity in HS-FGF interactions, and instead suggests that a set of common HS motifs mediates cellular targeting of different FGFs.


Journal of Biological Chemistry | 2008

Specific Heparan Sulfate Structures Modulate FGF10-mediated Submandibular Gland Epithelial Morphogenesis and Differentiation

Vaishali N. Patel; Karen M. Likar; Simona Zisman-Rozen; Samuel N. Cowherd; Keyonica S. Lassiter; Ifat Sher; Edwin A. Yates; Jeremy E. Turnbull; Dina Ron; Matthew P. Hoffman

FGF10, a heparan sulfate (HS)-binding growth factor, is required for branching morphogenesis of mouse submandibular glands (SMGs). HS increases the affinity of FGF10 for FGFR2b, which forms an FGF10·FGFR2b·HS ternary signaling complex, and results in diverse biological outcomes, including proliferation and epithelial morphogenesis. Defining the HS structures involved in specific FGF10-mediated events is critical to understand how HS modulates growth factor signaling in specific developmental contexts. We used HS-deficient BaF3/FGFR2b cells, which require exogenous HS to proliferate, to investigate the HS requirements for FGF10-mediated proliferation and primary SMG epithelia to investigate the structural requirements of HS for FGF10-mediated epithelial morphogenesis. In BaF3/FGFR2b cells, heparin with at least 10 saccharides and 6-O-, 2-O-, and N-sulfates were required for maximal proliferation. During FGF10-mediated SMG epithelial morphogenesis, HS increased proliferation and end bud expansion. Defined heparin decasaccharide libraries showed that 2-O-sulfation with either an N-or 6-O-sulfate induced end bud expansion, whereas decasaccharides with 6-O-sulfation alone induced duct elongation. End bud expansion resulted from increased FGFR1b signaling, with increased FGFR1b, Fgf1, and Spry1 as well as increased Aqp5 expression, a marker of end bud differentiation. Duct elongation was associated with expression of Cp2L1, a marker of developing ducts. Collectively, these findings show that the size and sulfate patterns of HS modulate specific FGF10-mediated events, such as proliferation, duct elongation, end bud expansion, and differentiation, and provide mechanistic insight as to how the developmental localization of specific HS structures in tissues influences FGF10-mediated morphogenesis and differentiation.


Journal of Biological Chemistry | 2006

Targeting perlecan in human keratinocytes reveals novel roles for perlecan in epidermal formation

Ifat Sher; Simona Zisman-Rozen; Liat Eliahu; John M. Whitelock; Nicole Maas-Szabowski; Yoshihiko Yamada; Dirk Breitkreutz; Norbert E. Fusenig; Eri Arikawa-Hirasawa; Renato V. Iozzo; Reuven Bergman; Dina Ron

Heparin-binding growth factors are crucial for the formation of human epidermis, but little is known about the role of heparan sulfate proteoglycans in this process. Here we investigated the role of the heparan sulfate proteoglycan, perlecan, in the formation of human epidermis, by utilizing in vitro engineered human skin. By disrupting perlecan expression either in the dermis or the epidermis, we found that epidermally derived perlecan is essential for epidermal formation. Perlecan-deficient keratinocytes formed a strikingly thin and poorly organized epidermis because of premature apoptosis and failure to complete their stratification program. Exogenous perlecan fully restored epidermal formation. Perlecan deposition in the basement membrane zone correlated with formation of multilayered epidermis. Perlecan deficiency, however, had no effect on the lining and deposition of major basement membrane components as was evident by a continuous linear staining of laminin and collagen IV. Similarly, perlecan deficiency did not affect the distribution of β1 integrin. Addition of the perlecan ligand, fibroblast growth factor 7, protected perlecan-deficient keratinocytes from cell death and improved the thickness of the epidermis. Taken together, our results revealed novel roles for perlecan in epidermal formation. Perlecan regulates both the survival and terminal differentiation steps of keratinocytes. Our results suggested a model whereby perlecan regulates these processes via controlling the bioavailability of perlecan-binding soluble factors involved in epidermal morphogenesis.


Journal of Biological Chemistry | 1999

Similarities and Differences between the Effects of Heparin and Glypican-1 on the Bioactivity of Acidic Fibroblast Growth Factor and the Keratinocyte Growth Factor

Bluma Berman; Olga Ostrovsky; Meir Shlissel; Tamar Lang; David G. Regan; Israel Vlodavsky; Rivka Ishai-Michaeli; Dina Ron

The keratinocyte growth factor (KGF or FGF-7) is unique among its family members both in its target cell specificity and its inhibition by the addition of heparin and the native heparan-sulfate proteoglycan (HSPG), glypican-1 in cells expressing endogenous HSPGs. FGF-1, which binds the FGF-7 receptor with a similar affinity as FGF-7, is stimulated by both molecules. In the present study, we investigated the modulation of FGF-7 activities by heparin and glypican-1 in HS-free background utilizing either HS-deficient cells expressing the FGF-7 receptor (designated BaF/KGFR cells) or soluble extracellular domain of the receptor. At physiological concentrations of FGF-7, heparin was required for high affinity receptor binding and for signaling in BaF/KGFR cells. In contrast, binding of FGF-7 to the soluble form of the receptor did not require heparin. However, high concentrations of heparin inhibited the binding of FGF-7 to both the cell surface and the soluble receptor, similar to the reported effect of heparin in cells expressing endogenous HSPGs. The difference in heparin dependence for high affinity interaction between the cell surface and soluble receptor may be due to other molecule(s) present on cell surfaces. Glypican-1 differed from heparin in that it stimulated FGF-1 but not FGF-7 activities in BaF/KGFR cells. Glypican-1 abrogated the stimulatory effect of heparin, and heparin reversed the inhibitory effect of glypican-1, indicating that this HSPG inhibits FGF-7 activities by acting, most likely, as a competitive inhibitor of stimulatory HSPG species for FGF-7. The regulatory effect of glypican-1 is mediated at the level of interaction with the growth factor as glypican-1 did not bind the KGFR. The effect of heparin and glypican-1 on FGF-1 and FGF-7 oligomerization was studied employing high and physiological concentrations of growth factors. We did not find a correlation between the effects of these glycosaminoglycans on FGFs biological activity and oligomerization. Altogether, our findings argue against the heparin-linked dimer presentation model as key in FGFR activation, and support the notion that HSPGs primarily affect high affinity interaction of FGFs with their receptors.

Collaboration


Dive into the Dina Ron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ifat Sher

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul W. Finch

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Donald P. Bottaro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Toru Miki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stuart A. Aaronson

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Bluma Berman

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ester Shaoul

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Israel Vlodavsky

Technion – Israel Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge