Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dina Vara is active.

Publication


Featured researches published by Dina Vara.


Circulation Research | 2008

Proteomics identifies thymidine phosphorylase as a key regulator of the angiogenic potential of colony-forming units and endothelial progenitor cell cultures.

Giordano Pula; Ursula Mayr; Colin E. Evans; Marianna Prokopi; Dina Vara; Xiaoke Yin; Zoe Astroulakis; Qingzhong Xiao; Jonathan Hill; Qingbo Xu; Manuel Mayr

Endothelial progenitor cell (EPC) cultures and colony-forming units (CFUs) have been extensively studied for their therapeutic and diagnostic potential. Recent data suggest a role for EPCs in the release of proangiogenic factors. To identify factors secreted by EPCs, conditioned medium from EPC cultures and CFUs was analyzed using a matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometer combined with offline peptide separation by nanoflow liquid chromatography. Results were verified by RT-PCR and multiplex cytokine assays and complemented by a cellular proteomic analysis of cultured EPCs and CFUs using difference in-gel electrophoresis. This extensive proteomic analysis revealed the presence of the proangiogenic factor thymidine phosphorylase (TP). Functional experiments demonstrated that inhibition of TP by 5-bromo-6-amino-uracil or gene silencing resulted in a significant increase in basal and oxidative stress-induced apoptosis, whereas supplementation with 2-deoxy-d-ribose-1-phosphate (dRP), the enzymatic product of TP, abrogated this effect. Moreover, dRP produced in EPC cultures stimulated endothelial cell migration in a paracrine manner, as demonstrated by gene-silencing experiments in transmigration and wound repair assays. RGD peptides and inhibitory antibodies to integrin &agr;v&bgr;3 attenuated the effect of conditioned medium from EPC cultures on endothelial migration. Finally, the effect of TP on angiogenesis was investigated by implantation of Matrigel plugs in mice. In these in vivo experiments, dRP strongly promoted neovascularization. Our data support the concept that EPCs exert their proangiogenic activity in a paracrine manner and demonstrate a key role of TP activity in their survival and proangiogenic potential.


Current Molecular Medicine | 2014

Reactive Oxygen Species: Physiological Roles in the Regulation of Vascular Cells

Dina Vara; Giordano Pula

Reactive oxygen species (ROS) are now appreciated to play several important roles in a number of biological processes and regulate cell physiology and function. ROS are a heterogeneous chemical class that includes radicals, such as superoxide ion (O2(•-)), hydroxyl radical (OH(•)) and nitric oxide (NO(•)), and non-radicals, such as hydrogen peroxide (H2O2), singlet oxygen ((1)O2), hypochlorous acid (HOCl), and peroxynitrite (NO3 (-)). In the cardiovascular system, besides playing a critical role in the development and progression of vasculopathies and other important pathologies such as congestive heart failure, atherosclerosis and thrombosis, ROS also regulate physiological processes. Evidence from a wealth of cardiovascular research studies suggests that ROS act as second messengers and play an essential role in vascular homeostasis by influencing discrete signal transduction pathways in various systems and cell types. They are produced throughout the vascular system, regulate differentiation and contractility of vascular smooth muscle cells, control vascular endothelial cell proliferation and migration, mediate platelet activation and haemostasis, and significantly contribute to the immune response. Our understanding of ROS chemistry and cell biology has evolved to the point of realizing that different ROS have distinct and important roles in cardiovascular physiology. This review will outline sources, functions and molecular mechanisms of action of different ROS in the cardiovascular system and will describe their emerging role in healthy cardiovascular physiology and homeostasis.


British Journal of Pharmacology | 2013

The novel NOX inhibitor 2‐acetylphenothiazine impairs collagen‐dependent thrombus formation in a GPVI‐dependent manner

Dina Vara; Michelangelo Campanella; Giordano Pula

NADPH oxidases (NOXs) contribute to platelet activation by a largely unknown mechanism. Here, we studied the effect of the novel NOX inhibitor 2‐acetylphenothiazine (2‐APT) on human platelet functional responses and intracellular signaling pathways.


Biochemical Journal | 2014

Amyloid β-peptide-dependent activation of human platelets: Essential role for Ca2+ and ADP in aggregation and thrombus formation

Ilaria Canobbio; Gianni F. Guidetti; Barbara Oliviero; Daria Manganaro; Dina Vara; Mauro Torti; Giordano Pula

Alzheimers disease is associated with the accumulation of Aβ (amyloid β)-peptides in the brain. Besides their cytotoxic effect on neurons, Aβ-peptides are thought to be responsible for the atherothrombotic complications associated with Alzheimers disease, which are collectively known as cerebrovascular disease. In the present study, we investigated the effect of Aβ-peptides on human platelet signal transduction and function. We discovered that the 25-35 domain of Aβ-peptides induce an increase in platelet intracellular Ca2+ that stimulates α-granule and dense granule secretion and leads to the release of the secondary agonist ADP. Released ADP acts in an autocrine manner as a stimulant for critical signalling pathways leading to the activation of platelets. This includes the activation of the protein kinases Syk, protein kinase C, Akt and mitogen-activated protein kinases. Ca2+-dependent release of ADP is also the main component of the activation of the small GTPase Rap1b and the fibrinogen receptor integrin αIIbβ3, which leads to increased platelet aggregation and increased thrombus formation in human whole blood. Our discoveries complement existing understanding of cerebrovascular dementia and suggest that Aβ-peptides can induce vascular complications of Alzheimers disease by stimulating platelets in an intracellular Ca2+-dependent manner. Despite a marginal ADP-independent component suggested by low levels of signalling activity in the presence of apyrase or P2Y receptor inhibitors, Ca2+-dependent release of ADP by Aβ-peptides clearly plays a critical role in platelet activation. Targeting ADP signalling may therefore represent an important strategy to manage the cerebrovascular component of Alzheimers disease.


Journal of Biological Chemistry | 2016

Extracellular Fibrinogen-binding Protein (Efb) from Staphylococcus aureus Inhibits the Formation of Platelet-Leukocyte Complexes.

Mareike G. Posner; Abhishek Upadhyay; Aisha Alsheikh Abubaker; Tiago M. Fortunato; Dina Vara; Ilaria Canobbio; Stefan Bagby; Giordano Pula

Extracellular fibrinogen-binding protein (Efb) from Staphylococcus aureus inhibits platelet activation, although its mechanism of action has not been established. In this study, we discovered that the N-terminal region of Efb (Efb-N) promotes platelet binding of fibrinogen and that Efb-N binding to platelets proceeds via two independent mechanisms: fibrinogen-mediated and fibrinogen-independent. By proteomic analysis of Efb-interacting proteins within platelets and confirmation by pulldown assays followed by immunoblotting, we identified P-selectin and multimerin-1 as novel Efb interaction partners. The interaction of both P-selectin and multimerin-1 with Efb is independent of fibrinogen. We focused on Efb interaction with P-selectin. Excess of P-selectin extracellular domain significantly impaired Efb binding by activated platelets, suggesting that P-selectin is the main receptor for Efb on the surface of activated platelets. Efb-N interaction with P-selectin inhibited P-selectin binding to its physiological ligand, P-selectin glycoprotein ligand-1 (PSGL-1), both in cell lysates and in cell-free assays. Because of the importance of P-selectin-PSGL-1 binding in the interaction between platelets and leukocytes, we tested human whole blood and found that Efb abolishes the formation of platelet-monocyte and platelet-granulocyte complexes. In summary, we present evidence that in addition to its documented antithrombotic activity, Efb can play an immunoregulatory role via inhibition of P-selectin-PSGL-1-dependent formation of platelet-leukocyte complexes.


Thrombosis and Haemostasis | 2013

Autocrine amplification of integrin αIIbβ3 activation and platelet adhesive responses by deoxyribose-1-phosphate

Dina Vara; Michelangelo Campanella; Ilaria Canobbio; Warwick B. Dunn; Giuseppe Pizzorno; Michio Hirano; Giordano Pula

Using direct injection mass spectrometry (DIMS) we discovered that deoxyribose-1-phosphate (dRP) is released by platelets upon activation. Interestingly, the addition of exogenous dRP to human platelets significantly increased platelet aggregation and integrin αIIbβ3 activation in response to thrombin. In parallel, genetically modified platelets with double genetic deletion of thymidine phosphorylase and uridine phosphorylase were characterised by reduced release of dRP, impaired aggregation and decreased integrin αIIbβ3 activation in response to thrombin. In vitro platelet adhesion onto fibrinogen and collagen under physiological flow conditions was potentiated by treatment of human platelets with exogenous dRP and impaired in transgenic platelets with reduced dRP release. Human and mouse platelets responded to dRP treatment with a sizeable increase in reactive oxygen species (ROS) generation and the pre-treament with the antioxidant apocynin abolished the effect of dRP on aggregation and integrin activation. Experiments directly assessing the activation of the small G protein Rap1b and protein kinase C suggested that dRP increases the basal levels of activity of these two pivotal platelet-activating pathways in a redox-dependent manner. Taken together, we present evidence that dRP is a novel autocrine amplifier of platelet activity, which acts on platelet redox levels and modulates integrin αIIbβ3.


PLOS ONE | 2014

Expression of Protease-Activated Receptor 1 and 2 and Anti-Tubulogenic Activity of Protease-Activated Receptor 1 in Human Endothelial Colony-Forming Cells

Tiago M. Fortunato; Dina Vara; Caroline P.D. Wheeler-Jones; Giordano Pula

Endothelial colony-forming cells (ECFCs) are obtained from the culture of human peripheral blood mononuclear cell (hPBMNC) fractions and are characterised by high proliferative and pro-vasculogenic potential, which makes them of great interest for cell therapy. Here, we describe the detection of protease-activated receptor (PAR) 1 and 2 amongst the surface proteins expressed in ECFCs. Both receptors are functionally coupled to extracellular signal-regulated kinase (ERK) 1 and 2, which become activated and phosphorylated in response to selective PAR1- or PAR2-activating peptides. Specific stimulation of PAR1, but not PAR2, significantly inhibits capillary-like tube formation by ECFCs in vitro, suggesting that tubulogenesis is negatively regulated by proteases able to stimulate PAR1 (e.g. thrombin). The activation of ERKs is not involved in the regulation of tubulogenesis in vitro, as suggested by use of the MEK inhibitor PD98059 and by the fact that PAR2 stimulation activates ERKs without affecting capillary tube formation. Both qPCR and immunoblotting showed a significant downregulation of vascular endothelial growth factor 2 (VEGFR2) in response to PAR1 stimulation. Moreover, the addition of VEGF (50–100 ng/ml) but not basic Fibroblast Growth Factor (FGF) (25–100 ng/ml) rescued tube formation by ECFCs treated with PAR1-activating peptide. Therefore, we propose that reduction of VEGF responsiveness resulting from down-regulation of VEGFR2 is underlying the anti-tubulogenic effect of PAR1 activation. Although the role of PAR2 remains elusive, this study sheds new light on the regulation of the vasculogenic activity of ECFCs and suggests a potential link between adult vasculogenesis and the coagulation cascade.


Antioxidants & Redox Signaling | 2018

Direct Activation of NADPH Oxidase 2 by 2-Deoxyribose-1-Phosphate Triggers Nuclear Factor Kappa B-Dependent Angiogenesis

Dina Vara; Joanna M. Watt; Tiago M. Fortunato; Harry Mellor; Matthew Burgess; Kate Wicks; Kimberly A. Mace; Shaun Reeksting; Anneke Lubben; Caroline P.D. Wheeler-Jones; Giordano Pula

Abstract Aims: Deoxyribose-1-phosphate (dRP) is a proangiogenic paracrine stimulus released by cancer cells, platelets, and macrophages and acting on endothelial cells. The objective of this study was to clarify how dRP stimulates angiogenic responses in human endothelial cells. Results: Live cell imaging, electron paramagnetic resonance, pull-down of dRP-interacting proteins, followed by immunoblotting, gene silencing of different NADPH oxidases (NOXs), and their regulatory cosubunits by small interfering RNA (siRNA) transfection, and experiments with inhibitors of the sugar transporter glucose transporter 1 (GLUT1) were utilized to demonstrate that dRP acts intracellularly by directly activating the endothelial NOX2 complex, but not NOX4. Increased reactive oxygen species generation in response to NOX2 activity leads to redox-dependent activation of the transcription factor nuclear factor kappa B (NF-κB), which, in turn, induces vascular endothelial growth factor receptor 2 (VEGFR2) upregulation. Using endothelial tube formation assays, gene silencing by siRNA, and antibody-based receptor inhibition, we demonstrate that the activation of NF-κB and VEGFR2 is necessary for the angiogenic responses elicited by dRP. The upregulation of VEGFR2 and NOX2-dependent stimulation of angiogenesis by dRP were confirmed in excisional wound and Matrigel plug vascularization assays in vivo using NOX2−/− mice. Innovation: For the first time, we demonstrate that dRP acts intracellularly and stimulates superoxide anion generation by direct binding and activation of the NOX2 enzymatic complex. Conclusions: This study describes a novel molecular mechanism underlying the proangiogenic activity of dRP, which involves the sequential activation of NOX2 and NF-κB and upregulation of VEGFR2. Antioxid. Redox Signal. 28, 110–130.


Platelets | 2017

A novel flow cytometry assay using dihydroethidium as redox-sensitive probe reveals NADPH oxidase-dependent generation of superoxide anion in human platelets exposed to amyloid peptide β

Aisha Alsheikh Abubaker; Dina Vara; Ian M. Eggleston; Ilaria Canobbio; Giordano Pula

Abstract Reactive oxygen species (ROS) generation is critical in the regulation of platelets, which has important implications in the modulation of hemostasis and thrombosis. Nonetheless, despite several assays have been described and successfully utilized in the past, the analysis of ROS generation in human platelets remains challenging. Here we show that dihydroethidium (DHE) allows the characterization of redox responses upon platelet activation by physiological and pathological stimuli. In particular, the flow cytometry assay that we describe here allowed us to confirm that thrombin, collagen-related peptide (CRP) and arachidonic acid but not adenosine diphosphate (ADP) stimulate superoxide anion formation in a concentration-dependent manner. 0.1unit/ml thrombin, 3 μg/ml CRP and 30 μM arachidonic acid are commonly used to stimulate platelets in vitro and here were shown to stimulate a significant increase in superoxide anion formation. The ROS scavenger N-acetylcysteine (NAC) abolished superoxide anion generation in response to all tested stimuli, but the pan-NADPH oxidase (NOX) inhibitor VAS2870 only inhibited superoxide anion formation in response to thrombin and CRP. The involvement of NOXs in thrombin and CRP-dependent responses was confirmed by the inhibition of platelet aggregation induced by these stimuli by VAS2870, while platelet aggregation in response to arachidonic acid was insensitive to this inhibitor. In addition, the pathological platelet stimulus amyloid β (Aβ) 1–42 peptide induced superoxide anion formation in a concentration-dependent manner. Aβ peptide stimulated superoxide anion formation in a NOX-dependent manner, as proved by the use of VAS2870. Aβ 1–42 peptide displayed only moderate activity as an aggregation stimulus, but was able to significantly potentiate platelet aggregation in response to submaximal agonists concentrations, such as 0.03 unit/ml thrombin and 10 μM arachidonic acid. The inhibition of NOXs by 10 μM VAS2870 abolished Aβ-dependent potentiation of platelet aggregation in response to 10 μM arachidonic acid, suggesting that the pro-thrombotic activity of Aβ peptides depends on NOX activity. Similar experiments could not be performed with thrombin or collagen, as NOXs are required for the signaling induced by these stimuli. These findings shed some new light on the pro-thrombotic activity of Aβ peptides. In summary, here we describe a novel and reliable assay for the detection of superoxide anion in human platelets. This is particularly important for the investigation of the pathophysiological role of redox stress in platelets, a field of research of increasing importance, but hindered by the absence of a reliable and easily accessible ROS detection methodology applicable to platelets.


Cardiovascular Research | 2014

531Platelet-derived deoxyribose-1-phosphate promotes endothelial cell motility and angiogenesis in vivo via redox stimulation

Dina Vara; Caroline P.D. Wheeler-Jones; Kimberly A. Mace; Harry Mellor; Giordano Pula

Collaboration


Dive into the Dina Vara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge