Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dinesh C. Soares is active.

Publication


Featured researches published by Dinesh C. Soares.


Molecular Psychiatry | 2008

The DISC locus in psychiatric illness

Jennifer E. Chubb; Nicholas J. Bradshaw; Dinesh C. Soares; David J. Porteous; J. K. Millar

The DISC locus is located at the breakpoint of a balanced t(1;11) chromosomal translocation in a large and unique Scottish family. This translocation segregates in a highly statistically significant manner with a broad diagnosis of psychiatric illness, including schizophrenia, bipolar disorder and major depression, as well as with a narrow diagnosis of schizophrenia alone. Two novel genes were identified at this locus and due to the high prevalence of schizophrenia in this family, they were named Disrupted-in-Schizophrenia-1 (DISC1) and Disrupted-in-Schizophrenia-2 (DISC2). DISC1 encodes a novel multifunctional scaffold protein, whereas DISC2 is a putative noncoding RNA gene antisense to DISC1. A number of independent genetic linkage and association studies in diverse populations support the original linkage findings in the Scottish family and genetic evidence now implicates the DISC locus in susceptibility to schizophrenia, schizoaffective disorder, bipolar disorder and major depression as well as various cognitive traits. Despite this, with the exception of the t(1;11) translocation, robust evidence for a functional variant(s) is still lacking and genetic heterogeneity is likely. Of the two genes identified at this locus, DISC1 has been prioritized as the most probable candidate susceptibility gene for psychiatric illness, as its protein sequence is directly disrupted by the translocation. Much research has been undertaken in recent years to elucidate the biological functions of the DISC1 protein and to further our understanding of how it contributes to the pathogenesis of schizophrenia. These data are the main subject of this review; however, the potential involvement of DISC2 in the pathogenesis of psychiatric illness is also discussed. A detailed picture of DISC1 function is now emerging, which encompasses roles in neurodevelopment, cytoskeletal function and cAMP signalling, and several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness. DISC1 is a hub protein in a multidimensional risk pathway for major mental illness, and studies of this pathway are opening up opportunities for a better understanding of causality and possible mechanisms of intervention.


The Plant Cell | 2005

ARABIDOPSIS CRINKLY4 Function, Internalization, and Turnover Are Dependent on the Extracellular Crinkly Repeat Domain

Miriam L. Gifford; Fiona C. Robertson; Dinesh C. Soares; Gwyneth C. Ingram

The study of the regulation and cellular dynamics of receptor kinase signaling in plants is a rapidly evolving field that promises to give enormous insights into the molecular control of signal perception. In this study, we have analyzed the behavior of the L1-specific receptor kinase ARABIDOPSIS CRINKLY4 (ACR4) from Arabidopsis thaliana in planta and have shown it to be present in two distinct compartments within cells. These represent protein export bodies and a population of internalized vesicles. In parallel, deletion analysis has shown that a predicted β-propeller–forming extracellular domain is necessary for ACR4 function. Nonfunctional ACR4 variants with deletions or point mutations in this domain behave differently to wild-type fusion protein in that they are not internalized to the same extent. In addition, in contrast with functional ACR4, which appears to be rapidly turned over, they are stabilized. Thus, for ACR4, internalization and turnover are linked and depend on functionality, suggesting that ACR4 signaling may be subject to damping down via internalization and degradation. The observed rapid turnover of ACR4 sets it apart from other recently studied plant receptor kinases. Finally, ACR4 kinase activity is not required for protein function, leading us to propose, by analogy to animal systems, that ACR4 may hetero-oligomerize with a kinase-active partner during signaling. Plant and animal receptor kinases have distinct evolutionary origins. However, with other recent work, our study suggests that there has been considerable convergent evolution between mechanisms used to regulate their activity.


American Journal of Human Genetics | 2009

A Cytogenetic Abnormality and Rare Coding Variants Identify ABCA13 as a Candidate Gene in Schizophrenia, Bipolar Disorder, and Depression

Helen M. Knight; Benjamin S. Pickard; Alan Maclean; M. P. Malloy; Dinesh C. Soares; Allan F. McRae; Alison Condie; Angela White; William Hawkins; Kevin A. McGhee; Margaret Van Beck; Donald J. MacIntyre; Ian J. Deary; Peter M. Visscher; David J. Porteous; Ronald E. Cannon; David St Clair; Walter J. Muir; Douglas Blackwood

Schizophrenia and bipolar disorder are leading causes of morbidity across all populations, with heritability estimates of approximately 80% indicating a substantial genetic component. Population genetics and genome-wide association studies suggest an overlap of genetic risk factors between these illnesses but it is unclear how this genetic component is divided between common gene polymorphisms, rare genomic copy number variants, and rare gene sequence mutations. We report evidence that the lipid transporter gene ABCA13 is a susceptibility factor for both schizophrenia and bipolar disorder. After the initial discovery of its disruption by a chromosome abnormality in a person with schizophrenia, we resequenced ABCA13 exons in 100 cases with schizophrenia and 100 controls. Multiple rare coding variants were identified including one nonsense and nine missense mutations and compound heterozygosity/homozygosity in six cases. Variants were genotyped in additional schizophrenia, bipolar, depression (n > 1600), and control (n > 950) cohorts and the frequency of all rare variants combined was greater than controls in schizophrenia (OR = 1.93, p = 0.0057) and bipolar disorder (OR = 2.71, p = 0.00007). The population attributable risk of these mutations was 2.2% for schizophrenia and 4.0% for bipolar disorder. In a study of 21 families of mutation carriers, we genotyped affected and unaffected relatives and found significant linkage (LOD = 4.3) of rare variants with a phenotype including schizophrenia, bipolar disorder, and major depression. These data identify a candidate gene, highlight the genetic overlap between schizophrenia, bipolar disorder, and depression, and suggest that rare coding variants may contribute significantly to risk of these disorders.


ACS Chemical Neuroscience | 2011

DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness

Dinesh C. Soares; Becky C. Carlyle; Nicholas J. Bradshaw; David J. Porteous

Disrupted in schizophrenia 1 (DISC1) is well established as a genetic risk factor across a spectrum of psychiatric disorders, a role supported by a growing body of biological studies, making the DISC1 protein interaction network an attractive therapeutic target. By contrast, there is a relative deficit of structural information to relate to the myriad biological functions of DISC1. Here, we critically appraise the available bioinformatics and biochemical analyses on DISC1 and key interacting proteins, and integrate this with the genetic and biological data. We review, analyze, and make predictions regarding the secondary structure and propensity for disordered regions within DISC1, its protein-interaction domains, subcellular localization motifs, and the structural and functional implications of common and ultrarare DISC1 variants associated with major mental illness. We discuss signaling pathways of high pharmacological potential wherein DISC1 participates, including those involving phosphodiesterase 4 (PDE4) and glycogen synthase kinase 3 (GSK3). These predictions and priority areas can inform future research in the translational and potentially guide the therapeutic processes.


Frontiers of Biology in China | 2013

DISC1 genetics, biology and psychiatric illness

Pippa A. Thomson; Elise L.V. Malavasi; Ellen Grünewald; Dinesh C. Soares; Malgorzata Borkowska; J. Kirsty Millar

Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points toward DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.


The Journal of Neuroscience | 2011

PKA Phosphorylation of NDE1 Is DISC1/PDE4 Dependent and Modulates Its Interaction with LIS1 and NDEL1

Nicholas J. Bradshaw; Dinesh C. Soares; Becky C. Carlyle; Fumiaki Ogawa; Hazel Davidson-Smith; Sheila Christie; Shaun Mackie; Pippa Thomson; David J. Porteous; J. Kirsty Millar

Nuclear distribution factor E-homolog 1 (NDE1), Lissencephaly 1 (LIS1), and NDE-like 1 (NDEL1) together participate in essential neurodevelopmental processes, including neuronal precursor proliferation and differentiation, neuronal migration, and neurite outgrowth. NDE1/LIS1/NDEL1 interacts with Disrupted in Schizophrenia 1 (DISC1) and the cAMP-hydrolyzing enzyme phosphodiesterase 4 (PDE4). DISC1, PDE4, NDE1, and NDEL1 have each been implicated as genetic risk factors for major mental illness. Here, we demonstrate that DISC1 and PDE4 modulate NDE1 phosphorylation by cAMP-dependent protein kinase A (PKA) and identify a novel PKA substrate site on NDE1 at threonine-131 (T131). Homology modeling predicts that phosphorylation at T131 modulates NDE1–LIS1 and NDE1–NDEL1 interactions, which we confirm experimentally. DISC1–PDE4 interaction thus modulates organization of the NDE1/NDEL1/LIS1 complex. T131-phosphorylated NDE1 is present at the postsynaptic density, in proximal axons, within the nucleus, and at the centrosome where it becomes substantially enriched during mitosis. Mutation of the NDE1 T131 site to mimic PKA phosphorylation inhibits neurite outgrowth. Thus PKA-dependent phosphorylation of the NDE1/LIS1/NDEL1 complex is DISC1–PDE4 modulated and likely to regulate its neural functions.


PLOS ONE | 2009

Structural models of human eEF1A1 and eEF1A2 reveal two distinct surface clusters of sequence variation and potential differences in phosphorylation.

Dinesh C. Soares; Paul N. Barlow; Helen J. Newbery; David J. Porteous; Catherine M. Abbott

Background Despite sharing 92% sequence identity, paralogous human translation elongation factor 1 alpha-1 (eEF1A1) and elongation factor 1 alpha-2 (eEF1A2) have different but overlapping functional profiles. This may reflect the differential requirements of the cell-types in which they are expressed and is consistent with complex roles for these proteins that extend beyond delivery of tRNA to the ribosome. Methodology/Principal Findings To investigate the structural basis of these functional differences, we created and validated comparative three-dimensional (3-D) models of eEF1A1 and eEF1A2 on the basis of the crystal structure of homologous eEF1A from yeast. The spatial location of amino acid residues that vary between the two proteins was thereby pinpointed, and their surface electrostatic and lipophilic properties were compared. None of the variations amongst buried amino acid residues are judged likely to have a major structural effect on the protein fold, or to affect domain-domain interactions. Nearly all the variant surface-exposed amino acid residues lie on one face of the protein, in two proximal but distinct sub-clusters. The result of previously performed mutagenesis in yeast may be interpreted as confirming the importance of one of these clusters in actin-bundling and filament disorganization. Interestingly, some variant residues lie in close proximity to, and in a few cases show differences in interactions with, residues previously inferred to be directly involved in binding GTP/GDP, eEF1Bα and aminoacyl-tRNA. Additional sequence-based predictions, in conjunction with the 3-D models, reveal likely differences in phosphorylation sites that could reconcile some of the functional differences between the two proteins. Conclusions The revelation and putative functional assignment of two distinct sub-clusters on the surface of the protein models should enable rational site-directed mutagenesis, including homologous reverse-substitution experiments, to map surface binding patches onto these proteins. The predicted variant-specific phosphorylation sites also provide a basis for experimental verification by mutagenesis. The models provide a structural framework for interpretation of the resulting functional analysis.


Journal of Biological Chemistry | 2008

Structure of the N-terminal Region of Complement Factor H and Conformational Implications of Disease-linked Sequence Variations

Henry G. Hocking; Andrew P. Herbert; David J. Kavanagh; Dinesh C. Soares; Viviana P. Ferreira; Michael K. Pangburn; Dušan Uhrín; Paul N. Barlow

Factor H is a regulatory glycoprotein of the complement system. We expressed the three N-terminal complement control protein modules of human factor H (FH1-3) and confirmed FH1-3 to be the minimal unit with cofactor activity for C3b proteolysis by factor I. We reconstructed FH1-3 from NMR-derived structures of FH1-2 and FH2-3 revealing an ∼105-Å-long rod-like arrangement of the modules. In structural comparisons with other C3b-engaging proteins, factor H module 3 most closely resembles factor B module 3, consistent with factor H competing with factor B for binding C3b. Factor H modules 1, 2, and 3 each has a similar backbone structure to first, second, and third modules, respectively, of functional sites in decay accelerating factor and complement receptor type 1; the equivalent intermodular tilt and twist angles are also broadly similar. Resemblance between molecular surfaces is closest for first modules but absent in the case of second modules. Substitution of buried Val-62 with Ile (a factor H single nucleotide polymorphism potentially protective for age-related macular degeneration and dense deposit disease) causes rearrangements within the module 1 core and increases thermal stability but does not disturb the interface with module 2. Replacement of partially exposed (in module 1) Arg-53 by His (an atypical hemolytic uremic syndrome-linked mutation) did not impair structural integrity at 37 °C, but this FH1-2 mutant was less stable at higher temperatures; furthermore, chemical shift differences indicated potential for small structural changes at the module 1-2 interface.


Molecular Psychiatry | 2014

DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan

David J. Porteous; Pippa A. Thomson; J. K. Millar; Kathryn L. Evans; William Hennah; Dinesh C. Soares; Shane McCarthy; W R McCombie; S. J. Clapcote; Carsten Korth; Nicholas J. Brandon; Akira Sawa; Atsushi Kamiya; J. C. Roder; Stephen M. Lawrie; Andrew M. McIntosh; D. St Clair; D. H. Blackwood

DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan


Human Molecular Genetics | 2012

A t(1;11) translocation linked to schizophrenia and affective disorders gives rise to aberrant chimeric DISC1 transcripts that encode structurally altered, deleterious mitochondrial proteins

Jennifer E. Eykelenboom; Gareth J. Briggs; Nicholas J. Bradshaw; Dinesh C. Soares; Fumiaki Ogawa; Sheila Christie; Elise L.V. Malavasi; Paraskevi Makedonopoulou; Shaun Mackie; M. P. Malloy; Martin A. Wear; Elizabeth A. Blackburn; Janice Bramham; Andrew M. McIntosh; Douglas Blackwood; Walter J. Muir; David J. Porteous; J. Kirsty Millar

Disrupted-In-Schizophrenia 1 (DISC1) was identified as a risk factor for psychiatric illness through its disruption by a balanced chromosomal translocation, t(1;11)(q42.1;q14.3), that co-segregates with schizophrenia, bipolar disorder and depression. We previously reported that the translocation reduces DISC1 expression, consistent with a haploinsufficiency disease model. Here we report that, in lymphoblastoid cell lines, the translocation additionally results in the production of abnormal transcripts due to the fusion of DISC1 with a disrupted gene on chromosome 11 (DISC1FP1/Boymaw). These chimeric transcripts encode abnormal proteins, designated CP1, CP60 and CP69, consisting of DISC1 amino acids 1–597 plus 1, 60 or 69 amino acids, respectively. The novel 69 amino acids in CP69 induce increased α-helical content and formation of large stable protein assemblies. The same is predicted for CP60. Both CP60 and CP69 exhibit profoundly altered functional properties within cell lines and neurons. Both are predominantly targeted to mitochondria, where they induce clustering and loss of membrane potential, indicative of severe mitochondrial dysfunction. There is currently no access to neural material from translocation carriers to confirm these findings, but there is no reason to suppose that these chimeric transcripts will not also be expressed in the brain. There is thus potential for the production of abnormal chimeric proteins in the brains of translocation carriers, although at substantially lower levels than for native DISC1. The mechanism by which inheritance of the translocation increases risk of psychiatric illness may therefore involve both DISC1 haploinsufficiency and mitochondrial deficiency due to the effects of abnormal chimeric protein expression. GenBank accession numbers: DISC1FP1 (EU302123), Boymaw (GU134617), der 11 chimeric transcript DISC1FP1 exon 2 to DISC1 exon 9 (JQ650115), der 1 chimeric transcript DISC1 exon 4 to DISC1FP1 exon 4 (JQ650116), der 1 chimeric transcript DISC1 exon 6 to DISC1FP1 exon 3a (JQ650117).

Collaboration


Dive into the Dinesh C. Soares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitri I. Svergun

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge