Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ding Xia is active.

Publication


Featured researches published by Ding Xia.


Radiology | 2013

Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis.

Guillaume Madelin; James S. Babb; Ding Xia; Gregory Chang; Svetlana Krasnokutsky; Steven B. Abramson; Alexej Jerschow; Ravinder R. Regatte

PURPOSE To assess the potential use of sodium magnetic resonance (MR) imaging of cartilage, with and without fluid suppression by using an adiabatic pulse, for classifying subjects with versus subjects without osteoarthritis at 7.0 T. MATERIALS AND METHODS The study was approved by the institutional review board and was compliant with HIPAA. The knee cartilage of 19 asymptomatic (control subjects) and 28 symptomatic (osteoarthritis patients) subjects underwent 7.0-T sodium MR imaging with use of two different sequences: one without fluid suppression (radial three-dimensional sequence) and one with fluid suppression (inversion recovery [IR] wideband uniform rate and smooth truncation [WURST]). Fluid suppression was obtained by using IR with an adiabatic inversion pulse (WURST pulse). Mean sodium concentrations and their standard deviations were measured in the patellar, femorotibial medial, and lateral cartilage regions over four consecutive sections for each subject. The minimum, maximum, median, and average means and standard deviations were calculated over all measurements for each subject. The utility of these measures in the detection of osteoarthritis was evaluated by using logistic regression and the area under the receiver operating characteristic curve (AUC). Bonferroni correction was applied to the P values obtained with logistic regression. RESULTS Measurements from IR WURST were found to be significant predicators of all osteoarthritis (Kellgren-Lawrence score of 1-4) and early osteoarthritis (Kellgren-Lawrence score of 1 or 2). The minimum standard deviation provided the highest AUC (0.83) with the highest accuracy (>78%), sensitivity (>82%), and specificity (>74%) for both all osteoarthritis and early osteoarthritis groups. CONCLUSION Quantitative sodium MR imaging at 7.0 T with fluid suppression by using adiabatic IR is a potential biomarker for osteoarthritis.


Magnetic Resonance in Medicine | 2012

Reproducibility and repeatability of quantitative sodium magnetic resonance imaging in vivo in articular cartilage at 3 T and 7 T

Guillaume Madelin; James S. Babb; Ding Xia; Gregory Chang; Alexej Jerschow; Ravinder R. Regatte

Osteoarthritis is a degenerative disease of articular cartilage that may be associated with a loss of glycosaminoglycans. Quantitative sodium magnetic resonance imaging is highly specific to glycosaminoglycan content and could be used to assess the biochemical degradation of cartilage in early osteoarthritis. However, the reproducibility and repeatability of this technique are not well documented. The aim of this study is to test the reproducibility and repeatability of sodium quantification in cartilage in vivo using intraday and interday acquisitions at 3 T and 7 T, with a radial 3D sequence, with and without fluid suppression. Fluid suppression was obtained by adiabatic inversion recovery (IR WURST) and is expected to improve the sensitivity of the method to glycosaminoglycan content. The root mean square of coefficients of variation are all in the range of 7.5–13.6%. No significant intermagnet, intersequence, intraday, and interday differences in the coefficients of variation were observed. Sodium quantification using IR WURST gave values closer to those reported in the literature for healthy cartilage (220–310 mM) than radial 3D. In conclusion, IR WURST was more accurate in context of sodium measurement, with a reproducibility and repeatability comparable to other compositional magnetic resonance imaging techniques of cartilage. Magn Reson Med, 2012.


NMR in Biomedicine | 2013

Dynamic three-dimensional imaging of phosphocreatine recovery kinetics in the human lower leg muscles at 3T and 7T: a preliminary study

Prodromos Parasoglou; Ding Xia; Gregory Chang; Ravinder R. Regatte

The rate of phosphocreatine (PCr) resynthesis after physical exercise has been extensively studied with phosphorus (31P)‐MRS. Previous studies have used small surface coils that were limited to measuring one superficial muscle per experiment. This study focuses on the development and implementation of a spectrally selective three‐dimensional turbo spin echo (3D‐TSE) sequence at 3T and 7T with temporal resolution of 24 s, using two geometrically identical volume coils. We acquired imaging data of PCr recovery from four healthy volunteers and one diabetic patient, who performed plantar flexions using resistance bands. We segmented the anatomical regions of six different muscles from the lower leg, namely the gastrocnemius [lateral (GL) and medial (GM)], the tibialis [anterior (TA) and posterior (TP)], the soleus (S) and the peroneus (P) and measured the local PCr resynthesis rate constants. During the same examination, we also acquired unlocalized 31P‐MRS data at a temporal resolution of 6 s.


Journal of Magnetic Resonance Imaging | 2012

Comparison of a 28-channel receive array coil and quadrature volume coil for morphologic imaging and T2 mapping of knee cartilage at 7T

Gregory Chang; Graham C. Wiggins; Ding Xia; Riccardo Lattanzi; Guillaume Madelin; José G. Raya; Matthew Finnerty; Hiroyuki Fujita; Michael P. Recht; Ravinder R. Regatte

To compare a new birdcage‐transmit, 28‐channel receive array (28‐Ch) coil and a quadrature volume coil for 7T morphologic MRI and T2 mapping of knee cartilage.


Magnetic Resonance in Medicine | 2012

Rapid 3D-imaging of phosphocreatine recovery kinetics in the human lower leg muscles with compressed sensing

Prodromos Parasoglou; Li Feng; Ding Xia; Ricardo Otazo; Ravinder R. Regatte

The rate of phosphocreatine (PCr) resynthesis following physical exercise is an accepted index of mitochondrial oxidative metabolism and has been studied extensively with unlocalized 31P‐MRS methods and small surface coils. Imaging experiments using volume coils that measure several muscles simultaneously can provide new insights into the variability of muscle function in healthy and diseased states. However, they are limited by long acquisition times relative to the dynamics of PCr recovery. This work focuses on the implementation of a compressed sensing technique to accelerate imaging of PCr resynthesis following physical exercise, using a modified three‐dimensional turbo‐spin‐echo sequence and principal component analysis as sparsifying transform. The compressed sensing technique was initially validated using 2‐fold retrospective undersampling of fully sampled data from four volunteers acquired on a 7T MRI system (voxel size: 1.6 mL, temporal resolution: 24 s), which led to an accurate estimation of the mono‐exponential PCr resynthesis rate constant (mean error <6.4%). Acquisitions with prospective 2‐fold acceleration (temporal resolution: 12 s) demonstrated that three‐dimensional mapping of PCr resynthesis is possible at a temporal resolution that is sufficiently high for characterizing the recovery curve of several muscles in a single measurement. Magn Reson Med, 2012.


Magnetic Resonance in Medicine | 2013

3D-mapping of phosphocreatine concentration in the human calf muscle at 7 T: comparison to 3 T.

Prodromos Parasoglou; Ding Xia; Gregory Chang; Ravinder R. Regatte

The development and implementation of a spectrally selective 3D‐Turbo Spin Echo sequence for quantitative mapping of phosphocreatine (PCr) concentration in different muscles of the lower leg of healthy volunteers both at 3 T and 7 T.


Scientific Reports | 2013

Uniform magnetization transfer in chemical exchange saturation transfer magnetic resonance imaging

Jae-Seung Lee; Prodromos Parasoglou; Ding Xia; Alexej Jerschow; Ravinder R. Regatte

The development of chemical exchange saturation transfer (CEST) has led to the establishment of new contrast mechanisms in magnetic resonance imaging, which serve as enablers for advanced molecular imaging strategies. Macromolecules in tissues and organs often give rise to broad and asymmetric exchange effects, called magnetization transfer (MT) effects, which can mask the CEST contrast of interest. We show here that the saturation of these macromolecular pools simultaneously at two distinct frequencies can level out the asymmetric MT effects, thus allowing one to isolate the CEST effects in vivo. For the first time, clean CEST contrast for glycosaminoglycans (gagCEST) in cartilage in the human knee joint is presented. In addition, the method allows one to clearly demarcate glycosaminoglycan measurements from cartilage and synovial fluid regions. This uniform-MT CEST methodology has wide applicability in in vivo molecular imaging (such as brain, skeletal muscle, etc).


Contrast Media & Molecular Imaging | 2016

In vitro study of endogenous CEST agents at 3 T and 7 T

Jae-Seung Lee; Ding Xia; Alexej Jerschow; Ravinder R. Regatte

Chemical exchange saturation transfer (CEST) has been an intensive research area in MRI, providing contrast mechanisms for the amplified detection and monitoring of biomarkers and physiologically active molecules. In biological tissues and organs, many endogenous CEST agents coexist, and their CEST effects may overlap. The interpretation of such overlapped CEST effects can be addressed when the individual CEST effects originating from various metabolites are characterized. In this work, we present the in vitro measurements of the CEST effects from endogenous CEST agents that are commonly found in biological tissues and organs, at the external magnetic fields of 3 T and 7 T and under various pH conditions. Together with the proton NMR spectra measured at 11.7 T, these CEST effects have been evaluated in consideration of the chemical exchange rates, chemical shifts, and acidities of the labile protons. Amine protons of small metabolites might not be visible at 3 T, but some of them can be probed at 7 T, wherein their CEST effects may overlap with those from coexisting amide and hydroxyl protons.


NMR in Biomedicine | 2013

Three-dimensional mapping of the creatine kinase enzyme reaction rate in muscles of the lower leg.

Prodromos Parasoglou; Ding Xia; Gregory Chang; Antonio Convit; Ravinder R. Regatte

Phosphorus (31P) magnetization transfer (MT) techniques enable the non‐invasive measurement of metabolic turnover rates of important enzyme‐catalyzed reactions, such as the creatine kinase reaction (CK), a major transducing reaction involving adenosine triphosphate and phosphocreatine. Alteration in the kinetics of the CK reaction rate appears to play a central role in many disease states.


Magnetic Resonance in Medicine | 2013

Spectrally selective 3D TSE imaging of phosphocreatine in the human calf muscle at 3 T.

Prodromos Parasoglou; Ding Xia; Ravinder R. Regatte

Quantitative information about concentrations of several metabolites in human skeletal muscle can be obtained through localized 31P magnetic resonance spectroscopy methods. However, these methods have shortcomings: long acquisition times, limited volume coverage, and coarse resolution. Significantly higher spatial and temporal resolution of imaging of single metabolites can be achieved through spectrally selective three‐dimensional imaging methods. This study reports the implementation of a three‐dimensional spectrally selective turbo spin‐echo sequence, on a 3T clinical system, to map the concentration of phosphocreatine in the human calf muscle with significantly increased spatial resolution and in a clinically feasible scan time. Absolute phosphocreatine quantification was performed with the use of external phantoms after relaxation and flip angle correction of the turbo spin‐echo voxel signal. The mean ± standard deviation of the phosphocreatine concentration measured in five healthy volunteers was 29.4 ± 2.5 mM with signal‐to‐noise ratio of 14:1 and voxel size of 0.52 mL. Magn Reson Med, 2013.

Collaboration


Dive into the Ding Xia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge