Ding-Yu Lee
National Health Research Institutes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ding-Yu Lee.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Shun-Fu Chang; Cheng Allen Chang; Ding-Yu Lee; Pei-Ling Lee; Yu-Ming Yeh; Chiuan-Ren Yeh; Cheng-Kung Cheng; Shu Chien; Jeng-Jiann Chiu
Interstitial flow in and around tumor tissue affects the mechanical microenvironment to modulate tumor cell growth and metastasis. We investigated the roles of flow-induced shear stress in modulating cell cycle distribution in four tumor cell lines and the underlying mechanisms. In all four cell lines, incubation under static conditions for 24 or 48 h led to G0/G1 arrest; in contrast, shear stress (12 dynes/cm2) induced G2/M arrest. The molecular basis of the shear effect was analyzed, and the presentation on molecular mechanism is focused on human MG63 osteosarcoma cells. Shear stress induced increased expressions of cyclin B1 and p21CIP1 and decreased expressions of cyclins A, D1, and E, cyclin-dependent protein kinases (Cdk)-1, -2, -4, and -6, and p27KIP1 as well as a decrease in Cdk1 activity. Using specific antibodies and small interfering RNA, we found that the shear-induced G2/M arrest and corresponding changes in G2/M regulatory protein expression and activity were mediated by αvβ3 and β1 integrins through bone morphogenetic protein receptor type IA-specific Smad1 and Smad5. Shear stress also down-regulated runt-related transcription factor 2 (Runx2) binding activity and osteocalcin and alkaline phosphatase expressions in MG63 cells; these responses were mediated by αvβ3 and β1 integrins through Smad5. Our findings provide insights into the mechanism by which shear stress induces G2/M arrest in tumor cells and inhibits cell differentiation and demonstrate the importance of mechanical microenvironment in modulating molecular signaling, gene expression, cell cycle, and functions in tumor cells.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Ding-Yu Lee; Chih-I Lee; Ting-Er Lin; Seh Hong Lim; Jing Zhou; Ying-Chih Tseng; Shu Chien; Jeng-Jiann Chiu
Vascular endothelial cells (ECs) are exposed to different flow patterns (i.e., disturbed vs. laminar), and the associated oscillatory shear stress (OSS) or pulsatile shear stress (PSS) lead to differential responses. We investigated the roles of class I and II histone deacetylases (HDAC-1/2/3 and HDAC-5/7, respectively) in regulating NF-E2–related factor-2 (Nrf2) and Krüppel-like factor-2 (KLF2), two transcription factors governing many shear-responsive genes, and the cell cycle in ECs in response to OSS. Application of OSS (0.5 ± 4 dynes/cm2) to cultured ECs sustainably up-regulated class I and II HDACs and their nuclear accumulation, whereas PSS (12 ± 4 dynes/cm2) induced phosphorylation-dependent nuclear export of class II HDACs. En face immunohistochemical examination of rat aortic arch and experimentally stenosed abdominal aorta revealed high HDAC-2/3/5 levels in ECs in areas exposed to disturbed flow. OSS induced the association of HDAC-1/2/3 with Nrf2 and HDAC-3/5/7 with myocyte enhancer factor-2; deacetylation of these factors led to down-regulation of antioxidant gene NAD(P)H quinone oxidoreductase-1 (NQO1) and KLF2. HDAC-1/2/3– and HDAC-3/5/7–specific small interfering RNAs eliminated the OSS-induced down-regulation of NQO1 and KLF2, respectively. OSS up-regulated cyclin A and down-regulated p21CIP1 in ECs and induced their proliferation; these effects were mediated by HDAC-1/2/3. Intraperitoneal administration of the class I-specific HDAC inhibitor valproic acid into bromodeoxyuridine (BrdU)-infused rats inhibited the increased EC uptake of BrdU at poststenotic sites. The OSS-induced HDAC signaling and EC responses are mediated by phosphatidylinositol 3-kinase/Akt. Our findings demonstrate the important roles of different groups of HDACs in regulating the oxidative, inflammatory, and proliferative responses of ECs to disturbed flow with OSS.
Journal of Bone and Mineral Research | 2008
Ding-Yu Lee; Chiuan-Ren Yeh; Shun-Fu Chang; Pei-Ling Lee; Shu Chien; Cheng-Kung Cheng; Jeng-Jiann Chiu
Integrins play significant roles in mechanical responses of cells on extracellular matrix (ECM). We studied the roles of integrins and ECM proteins (fibronectin [FN], type I collagen [COL1], and laminin [LM]) in shear‐mediated signaling and the expression of bone formation‐related genes (early growth response‐1 [Egr‐1], c‐fos, cyclooxygenase‐2 [Cox‐2], and osteopontin [OPN]) in human osteosarcoma MG63 cells. MG63 cells on FN, COL1, and LM were kept as controls or subjected to shear stress (12 dynes/cm2), and the association of αvβ3 and β1 integrins with Shc, phosphorylation of mitogen‐activated protein kinases (MAPKs, i.e., extracellular signal‐regulated kinase [ERK], c‐jun‐NH2‐terminal kinase [JNK], and p38), and expressions of Egr‐1, c‐fos, Cox‐2, and OPN were determined. In MG63 cells, shear stress induces sustained associations of αvβ3 and β1 with Shc when seeded on FN, but sustained associations of only β1 with Shc when seeded on COL1/LM. Shear inductions of MAPKs and bone formation‐related genes were sustained (24 h) in cells on FN, but some of these responses were transient in cells on COL1/LM. The shear activations of ERK, JNK, and p38 were mediated by integrins and Shc, and these pathways differentially modulated the downstream bone formation‐related gene expression. Our findings showed that β1 integrin plays predominant roles for shear‐induced signaling and gene expression in osteoblast‐like MG63 cells on FN, COL1, and LM and that αvβ3 also plays significant roles for such responses in cells on FN. The β1/Shc association leads to the activation of ERK, which is critical for shear induction of bone formation‐related genes in osteoblast‐like cells.
Journal of Biological Chemistry | 2010
Ding-Yu Lee; Yi-Shuan J. Li; Shun-Fu Chang; Jing Zhou; Hui-Min Ho; Jeng-Jiann Chiu; Shu Chien
Interstitial flow in and around bone tissue is oscillatory in nature and affects the mechanical microenvironment for bone cell growth and formation. We investigated the role of oscillatory shear stress (OSS) in modulating the proliferation of human osteoblast-like MG63 cells and its underlying mechanisms. Application of OSS (0.5 ± 4 dynes/cm2) to MG63 cells induced sustained activation of phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR/p70S6K (p70S6 kinase) signaling cascades and hence cell proliferation, which was accompanied by increased expression of cyclins A and D1, cyclin-dependent protein kinases-2, -4, and -6, and bone formation-related genes (c-fos, Egr-1, and Cox-2) and decreased expression of p21CIP1 and p27KIP1. OSS-induced activation of PI3K/Akt/mTOR/p70S6K and cell proliferation were inhibited by specific antibodies or small interference RNAs of αvβ3 and β1 integrins and by dominant-negative mutants of Shc (Shc-SH2) and focal adhesion kinase (FAK) (FAK(F397Y)). Co-immunoprecipitation assay showed that OSS induces sustained increases in association of Shc and FAK with αvβ3 and β1 integrins and PI3K subunit p85, which were abolished by transfecting the cells with FAK(F397Y) or Shc-SH2. OSS also induced sustained activation of ERK, which was inhibited by the specific PI3K inhibitor LY294002 and was required for OSS-induced activation of mTOR/p70S6K and proliferation in MG63 cells. Our findings provide insights into the mechanisms by which OSS induces osteoblast-like cell proliferation through activation of αvβ3 and β1 integrins and synergistic interactions of FAK and Shc with PI3K, leading to the modulation of downstream ERK and Akt/mTOR/p70S6K pathways.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2005
Jeng-Jiann Chiu; Li-Jing Chen; Shun-Fu Chang; Pei-Ling Lee; Chih-I Lee; Min-Chien Tsai; Ding-Yu Lee; Hsing-Pang Hsieh; Shunichi Usami; Shu Chien
Objectives—Vascular endothelial cells (ECs) are influenced by shear stress and neighboring smooth muscle cells (SMCs). We investigated the inflammation-relevant gene expression in EC/SMC cocultures under static condition and in response to shear stress. Materials and Methods—Under static condition, DNA microarrays and reverse-transcription polymerase chain reaction identified 23 inflammation-relevant genes in ECs whose expression was significantly affected by coculture with SMCs, with 18 upregulated and 5 downregulated. Application of shear stress (12 dynes/cm2) to the EC side of the coculture for 6 hours inhibited most of the proinflammatory gene expressions in ECs induced by coculture with SMCs. Inhibition of nuclear factor-&kgr;B (NF-&kgr;B) activation by the p65-antisense, lactacystin, and N-acetyl-cysteine blocked the coculture-induced EC expression of proinflammatory genes, indicating that the NF-&kgr;B binding sites in the promoters of these genes play a significant role in their expression as a result of coculture with SMCs. Chromatin immunoprecipitation assays demonstrated the in vivo regulation of NF-&kgr;B recruitment to selected target promoters. Shear stress inhibited the SMC coculture-induced NF-&kgr;B activation in ECs and monocytic THP-1 cell adhesion to ECs. Conclusions—Our findings suggest that shear stress plays an inhibitory role in the proinflammatory gene expression in ECs located in close proximity to SMCs.
Molecular Endocrinology | 2009
Shun-Fu Chang; Ting-Kuo Chang; Hsin-Hsin Peng; Yi-Ting Yeh; Ding-Yu Lee; Chiuan-Ren Yeh; Jing Zhou; Cheng-Kung Cheng; Cheng Allen Chang; Jeng-Jiann Chiu
Cell cycle regulation by differentiation signals is critical for eukaryote development. We investigated the roles of bone morphogenetic protein (BMP)-4, an important stimulator of osteoblast differentiation and bone formation, in regulating cell cycle distribution in four osteoblast-like cell lines and mouse primary osteoblasts, and the underlying mechanisms. In all cells used, BMP-4 induced G(0)/G(1) arrest. The molecular basis of the BMP-4 effect was analyzed, and the presentation on molecular mechanism is focused on human MG63 cells. BMP-4 induced p21(CIP1) and p27(KIP1) expressions and hence cell differentiation but had no effects on the expressions of cyclins A, B1, D1, and E, cyclin-dependent protein kinase-2, -4, and -6. Using specific small interfering RNA (siRNA), we found that BMP-4-induced G(0)/G(1) arrest, and p21(CIP1) and p27(KIP1) expressions were mediated by BMP receptor type IA (BMPRIA)-specific Sma- and Mad-related protein (Smad)1/5. BMP-4 induced transient phosphorylations of ERK; transfection of MG63 cells with ERK2, but not ERK1, -specific siRNA inhibited the BMP-4-induced responses in MG63 cells. Pretreatment of MG63 cells with Arg-Gly-Asp-Ser, which blocks the cell-extracellular matrix interaction, or transfection with beta(3) integrin-specific siRNA inhibited BMP-4-induced ERK and Smad1/5 phosphorylations. BMP-4 induced transient increases in associations of beta(3)-integrin with focal adhesion kinase and Shc, the dominant-negative mutants of which inhibited BMP-4-induced ERK and Smad1/5 phosphorylations. Our results indicate that BMP-4 induces G(0)/G(1) arrest and hence differentiation in osteoblast-like cells through increased expressions of p21(CIP1) and p27(KIP1), which are mediated by BMPRIA-specific Smad1/5. The extracellular matrix/beta(3) integrin/ focal adhesion kinase/Shc/ERK2 signaling pathway is involved in these BMP-4-induced responses in osteoblast-like cells.
Gut | 2015
Yu-Tsung Shih; Mei-Cun Wang; Jing Zhou; Hsin-Hsin Peng; Ding-Yu Lee; Jeng-Jiann Chiu
Objectives Endothelial progenitor cells (EPCs) circulate with increased numbers in the peripheral blood of patients with highly-vascularised hepatocellular carcinoma (HCC) and contribute to angiogenesis and neovascularisation. We hypothesised that angiogenic EPCs, that is, colony forming unit-endothelial cells (CFU-ECs), and outgrowth EPCs, that is, endothelial colony-forming cells, may exert paracrine effects on the behaviours and metastatic capacities of human hepatoma cells. Design Various molecular and functional approaches ranging from in vitro cell culture studies on molecular signalling to in vivo investigations on cell invasion and orthotropic transplantation models in mice and clinical specimens from patients with HCC were used. Results Monocyte chemotactic protein-1 (MCP-1) was identified as a critical mediator released from CFU-ECs to contribute to the chemotaxis of Huh7 and Hep3B cells by inducing their microRNA-21 (miR-21) biogenesis through the C-C chemokine receptor-2/c-Jun N-terminal kinase/activator protein-1 signalling cascade. CFU-EC-induction of miR-21 in these cells activated their Rac1 and matrix metallopeptidase-9 by silencing Rho GTPase-activating protein-24 and tissue inhibitor of metalloproteinase-3, respectively, leading to increased cell mobility. MCP-1-induction of miR-21 induced epithelial-mesenchymal transformation of Huh7 cells in vitro and their intrahepatic metastatic capability in vivo. Moreover, increased numbers of MCP-1+ EPCs and their positive correlations with miR-21 induction and metastatic stages in human HCC were found. Conclusions Our results provide new insights into the complexity of EPC-HCC interactions and indicate that anticancer therapies targeting either the MCP-1 released from angiogenic EPCs or the miR-21 biogenesis in HCC cells may prevent the malignant progression of primary tumours.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Ding-Yu Lee; Ting-Er Lin; Chih-I Lee; Jing Zhou; Yi-Hsuan Huang; Pei-Ling Lee; Yu-Tsung Shih; Shu Chien; Jeng-Jiann Chiu
Significance This study demonstrates that hormone receptor RARα plays a vital role in the selective activation of proinflammatory and anti-inflammatory signaling to modulate the miR-10a/GATA6/VCAM-1 cascade in endothelial cells in response to proatherogenic oscillatory shear stress (OS) vs. atheroprotective pulsatile shear stress (PS). HDAC-3/5/7 and RXRα are induced by OS and PS to serve as mechanosensitive “repressors” and “enhancers,” respectively, to associate with RARα to modulate its binding to RA-responsive element (RARE) to switch miR-10a expression. Our findings provide insight into the relationship between two different epigenetic factors (HDACs and miRs) and hormone receptors (RARα and RXRα) in the regulation of endothelial functions and elucidate new mechanisms of hemodynamic-based pathophysiology of the atherosclerotic vascular wall. Histone deacetylases (HDACs) and microRNAs (miRs) have emerged as two important epigenetic factors in the regulation of vascular physiology. This study aimed to elucidate the relationship between HDACs and miRs in the hemodynamic modulation of endothelial cell (EC) dysfunction. We found that miR-10a has the lowest expression among all examined shear-responsive miRs in ECs under oscillatory shear stress (OS), and a relatively high expression under pulsatile shear stress (PS). PS and OS alter EC miR-10a expression to regulate the expression of its direct target GATA6 and downstream vascular cell adhesion molecule (VCAM)-1. PS induces the expression, nuclear accumulation, and association of retinoid acid receptor-α (RARα) and retinoid X receptor-α (RXRα). RARα and RXRα serve as a “director” and an “enhancer,” respectively, to enhance RARα binding to RA-responsive element (RARE) and hence miR-10a expression, thus down-regulating GATA6/VCAM-1 signaling in ECs. In contrast, OS induces associations of “repressors” HDAC-3/5/7 with RARα to inhibit the RARα-directed miR-10a signaling. The flow-mediated miR-10a expression is regulated by Krüppel-like factor 2 through modulation in RARα–RARE binding, with the consequent regulation in GATA6/VCAM-1 in ECs. These results are confirmed in vivo by en face staining on the aortic arch vs. the straight thoracic aorta of rats. Our findings identify a mechanism by which HDACs and RXRα modulate the hormone receptor RARα to switch miR-10a expression and hence the proinflammatory vs. anti-inflammatory responses of vascular endothelium under different hemodynamic forces.
Journal of Biomedical Science | 2018
Tung-Lin Yang; Pei-Ling Lee; Ding-Yu Lee; Wei-Li Wang; Shu-Yi Wei; Chih-I Lee; Jeng-Jiann Chiu
BackgroundAtherosclerosis occurs in arterial curvatures and branches, where the flow is disturbed with low and oscillatory shear stress (OSS). The remodeling and alterations of extracellular matrices (ECMs) and their composition is the critical step in atherogenesis. In this study, we investigated the effects of different ECM proteins on the regulation of mechanotransduction in vascular endothelial cells (ECs) in response to OSS.MethodsThrough the experiments ranging from in vitro cell culture studies on effects of OSS on molecular signaling to in vivo examinations on clinical specimens from patients with coronary artery disease (CAD), we elucidated the roles of integrins and different ECMs, i.e., fibronectin (FN) and laminin (LM), in transforming growth factor (TGF)-β receptor (TβR)-mediated Smad2 activation and nuclear factor-κB (NF-κB) signaling in ECs in response to OSS and hence atherogenesis.ResultsOSS at 0.5±12 dynes/cm2 induces sustained increases in the association of types I and II TβRs with β1 and β3 integrins in ECs grown on FN, but it only transient increases in ECs grown on LM. OSS induces a sustained activation of Smad2 in ECs on FN, but only a transient activation of Smad2 in ECs on LM. OSS-activation of Smad2 in ECs on FN regulates downstream NF-κB signaling and pro-inflammatory gene expression through the activation of β1 integrin and its association with TβRs. In contrast, OSS induces transient activations of β1 and β3 integrins in ECs on LM, which associate with type I TβR to regulate Smad2 phosphorylation, resulting in transient induction of NF-κB and pro-inflammatory gene expression. In vivo investigations on diseased human coronary arteries from CAD patients revealed that Smad2 is highly activated in ECs of atherosclerotic lesions, which is accompanied by the concomitant increase of FN rather than LM in the EC layer and neointimal region of atherosclerotic lesions.ConclusionsOur findings provide new insights into the mechanisms of how OSS regulates Smad2 signaling and pro-inflammatory genes through the complex signaling networks of integrins, TβRs, and ECMs, thus illustrating the molecular basis of regional pro-inflammatory activation within disturbed flow regions in the arterial tree.
Cardiovascular Research | 2012
Yu-Tsung Shih; Mei-Cun Wang; Tung-Lin Yang; Jing Zhou; Ding-Yu Lee; Pei-Ling Lee; Shaw-Fang Yet; Jeng-Jiann Chiu
AIMS The implication of circulating haematopoietic CD34(+) progenitors in the vasculature is unclear due to the lack of understanding of their characteristics and plasticity mediated by their cellular microenvironment. We investigated how vascular smooth muscle cells (SMCs) and their interactions with endothelial cells (ECs) affect the behaviour and plasticity of CD34(+)CD31(+) progenitors and the underlying mechanisms. METHODS AND RESULTS Human peripheral blood-derived CD34(+)CD31(+) cells were directly transplanted into injured arteries in vivo and co-cultured with ECs and SMCs in vitro. CD34(+)CD31(+) progenitors injected into wire-injured mouse arteries differentiate into ECs and macrophages in the neoendothelial layer and neointima, respectively. SMC-co-culture increases CD34(+)CD31(+) cell mobility and adhesion to and transmigration across ECs. Sorted CD34(+)CD31(+) progenitors that adhered to ECs co-cultured with SMCs have the capacity to form capillary-like structures in Matrigel and chimeric blood vessels in vivo. Sorted transmigrated progenitors give rise to macrophages with increased pro-angiogenic activity. These differentiations of CD34(+)CD31(+) progenitors into ECs and macrophages are mediated by β(2)-integrin and Notch-1, respectively. β(2)-Integrin and Notch-1 are activated by their counterligands, intercellular adhesion molecule-1 (ICAM-1) and jagged-1, which are highly expressed in the neoendothelium and neointima in injured arteries. Intra-arterial injection of β(2)-integrin-activated CD34(+)CD31(+) progenitors into wire-injured mouse arteries inhibits neointima formation. CONCLUSION Our findings indicate that the peripheral vascular niches composed of ECs and SMCs may predispose haematopoietic CD34(+)CD31(+) progenitors to differentiate into ECs and macrophages through the activations of the ICAM-1/β(2)-integrin and jagged-1/Notch-1 cascades, respectively.