Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dingzhong Tang is active.

Publication


Featured researches published by Dingzhong Tang.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Negative regulation of defense responses in plants by a conserved MAPKK kinase

Catherine A. Frye; Dingzhong Tang; Roger W. Innes

The enhanced disease resistance 1 (edr1) mutation of Arabidopsis confers resistance to powdery mildew disease caused by the fungus Erysiphe cichoracearum. Resistance mediated by the edr1 mutation is correlated with induction of several defense responses, including host cell death. Double mutant analysis revealed that all edr1-associated phenotypes are suppressed by mutations that block salicylic acid (SA) perception (nim1) or reduce SA production (pad4 and eds1). The NahG transgene, which lowers endogenous SA levels, also suppressed edr1. In contrast, the ein2 mutation did not suppress edr1-mediated resistance and associated phenotypes, indicating that ethylene and jasmonic acid-induced responses are not required for edr1 resistance. The EDR1 gene was isolated by positional cloning and was found to encode a putative MAP kinase kinase kinase similar to CTR1, a negative regulator of ethylene responses in Arabidopsis. Taken together, these data suggest that EDR1 functions at the top of a MAP kinase cascade that negatively regulates SA-inducible defense responses. Putative orthologs of EDR1 are present in monocots such as rice and barley, indicating that EDR1 may regulate defense responses in a wide range of crop species.


The Plant Cell | 2013

BR-SIGNALING KINASE1 Physically Associates with FLAGELLIN SENSING2 and Regulates Plant Innate Immunity in Arabidopsis

Hua Shi; Qiujing Shen; Yiping Qi; Haojie Yan; Haozhen Nie; Yongfang Chen; Ting Zhao; Fumiaki Katagiri; Dingzhong Tang

BR-SIGNALING KINASE1 (BSK1) is a substrate of the brassinosteroid receptor BRI1. This work shows that BSK1 physically associates with FLS2, and a mutation in BSK1 leads to enhanced susceptibility to multiple pathogens as well as defects in the FLS2-mediated reactive oxygen burst, demonstrating that BSK1 plays an important role in plant innate immunity. Pathogen-associated molecular pattern (PAMP)-trigged immunity (PTI) is the first defensive line of plant innate immunity and is mediated by pattern recognition receptors. Here, we show that a mutation in BR-SIGNALING KINASE1 (BSK1), a substrate of the brassinosteroid (BR) receptor BRASSINOSTEROID INSENSITIVE1, suppressed the powdery mildew resistance caused by a mutation in ENHANCED DISEASE RESISTANCE2, which negatively regulates powdery mildew resistance and programmed cell death, in Arabidopsis thaliana. A loss-of-function bsk1 mutant displayed enhanced susceptibility to virulent and avirulent pathogens, including Golovinomyces cichoracearum, Pseudomonas syringae, and Hyaloperonospora arabidopsidis. The bsk1 mutant also accumulated lower levels of salicylic acid upon infection with G. cichoracearum and P. syringae. BSK1 belongs to a receptor-like cytoplasmic kinase family and displays kinase activity in vitro; this kinase activity is required for its function. BSK1 physically associates with the PAMP receptor FLAGELLIN SENSING2 and is required for a subset of flg22-induced responses, including the reactive oxygen burst, but not for mitogen-activated protein kinase activation. Our data demonstrate that BSK1 is involved in positive regulation of PTI. Together with previous findings, our work indicates that BSK1 represents a key component directly involved in both BR signaling and plant immunity.


Plant Physiology | 2005

Regulation of Plant Disease Resistance, Stress Responses, Cell Death, and Ethylene Signaling in Arabidopsis by the EDR1 Protein Kinase

Dingzhong Tang; Katy M. Christiansen; Roger W. Innes

ENHANCED DISEASE RESISTANCE 1 (EDR1) encodes a CTR1-like kinase and was previously reported to function as a negative regulator of disease resistance and ethylene-induced senescence. Here, we report that the edr1 mutant displays enhanced stress responses and spontaneous necrotic lesions under drought conditions in the absence of pathogen, suggesting that EDR1 is also involved in stress response signaling and cell death regulation. Double mutant analysis revealed that these drought-induced phenotypes require salicylic acid but not ethylene signaling pathways. In addition, the edr1-mediated ethylene-induced senescence phenotype was suppressed by mutations in EIN2, but not by mutations in SID2, PAD4, EDS1, or NPR1, suggesting that EDR1 functions at a point of cross talk between ethylene and salicylic acid signaling that impinges on senescence and cell death. Two edr1-associated phenotypes, drought-induced growth inhibition and ethylene-induced senescence, were suppressed by mutations in ORE9, implicating ubiquitin-mediated protein degradation in the regulation of these phenotypes. However, the ore9 mutation did not suppress edr1-mediated enhanced disease resistance to powdery mildew or spontaneous lesions, indicating that these phenotypes are controlled by separate signaling pathways. To investigate the function of the EDR1 kinase domain, we expressed the C-terminal third of EDR1 in wild-type Columbia and edr1 backgrounds under the control of a dexamethasone-inducible promoter. Overexpression of the EDR1 kinase domain in an edr1 background had no obvious effect on edr1-associated phenotypes. However, overexpression of the EDR1 kinase domain in a wild-type Columbia background caused dominant negative phenotypes, including enhanced disease resistance to powdery mildew and enhanced ethylene-induced senescence; thus, the overexpressed EDR1 kinase domain alone does not exert EDR1 function, but rather negatively affects the function of native EDR1 protein.


The Plant Cell | 2013

Autophagy Contributes to Leaf Starch Degradation

Yan Wang; Bingjie Yu; Jinping Zhao; Jiangbo Guo; Ying Li; Shaojie Han; Lei Huang; Yumei Du; Yiguo Hong; Dingzhong Tang; Yule Liu

Leaf starch degradation was thought to be confined to the chloroplasts, but this study demonstrates that autophagy, a non-plastid-based process, also contributes to the nighttime degradation of starch in leaves. This finding provides new insight into the biological role of autophagy and leaf starch degradation. Transitory starch, a major photosynthetic product in the leaves of land plants, accumulates in chloroplasts during the day and is hydrolyzed to maltose and Glc at night to support respiration and metabolism. Previous studies in Arabidopsis thaliana indicated that the degradation of transitory starch only occurs in the chloroplasts. Here, we report that autophagy, a nonplastidial process, participates in leaf starch degradation. Excessive starch accumulation was observed in Nicotiana benthamiana seedlings treated with an autophagy inhibitor and in autophagy-related (ATG) gene-silenced N. benthamiana and in Arabidopsis atg mutants. Autophagic activity in the leaves responded to the dynamic starch contents during the night. Microscopy showed that a type of small starch granule-like structure (SSGL) was localized outside the chloroplast and was sequestered by autophagic bodies. Moreover, an increased number of SSGLs was observed during starch depletion, and disruption of autophagy reduced the number of vacuole-localized SSGLs. These data suggest that autophagy contributes to transitory starch degradation by sequestering SSGLs to the vacuole for their subsequent breakdown.


Plant Physiology | 2007

Mutations in LACS2, a Long-Chain Acyl-Coenzyme A Synthetase, Enhance Susceptibility to Avirulent Pseudomonas syringae But Confer Resistance to Botrytis cinerea in Arabidopsis

Dingzhong Tang; Michael T. Simonich; Roger W. Innes

We identified an Arabidopsis (Arabidopsis thaliana) mutant, sma4 (symptoms to multiple avr genotypes4), that displays severe disease symptoms when inoculated with avirulent strains of Pseudomonas syringae pv tomato, although bacterial growth is only moderately enhanced compared to wild-type plants. The sma4 mutant showed a normal susceptible phenotype to the biotrophic fungal pathogen Erysiphe cichoracearum. Significantly, the sma4 mutant was highly resistant to a necrotrophic fungal pathogen, Botrytis cinerea. Germination of B. cinerea spores on sma4 mutant leaves was inhibited, and penetration by those that did germinate was rare. The sma4 mutant also showed several pleiotropic phenotypes, including increased sensitivity to lower humidity and salt stress. Isolation of SMA4 by positional cloning revealed that it encodes LACS2, a member of the long-chain acyl-CoA synthetases. LACS2 has previously been shown to be involved in cutin biosynthesis. We therefore tested three additional cutin-defective mutants for resistance to B. cinerea: att1 (for aberrant induction of type three genes), bodyguard, and lacerata. All three displayed an enhanced resistance to B. cinerea. Our results indicate that plant cutin or cuticle structure may play a crucial role in tolerance to biotic and abiotic stress and in the pathogenesis of B. cinerea.


Plant Journal | 2011

ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis.

Yiping Wang; Marc T. Nishimura; Ting Zhao; Dingzhong Tang

The molecular interactions between Arabidopsis and the pathogenic powdery mildew Golovinomyces cichoracearum were studied by characterizing a disease-resistant Arabidopsis mutant atg2-2. The atg2-2 mutant showed enhanced resistance to powdery mildew and dramatic mildew-induced cell death as well as early senescence phenotypes in the absence of pathogens. Defense-related genes were constitutively activated in atg2-2. In atg2-2 mutants, spontaneous cell death, early senescence and disease resistance required the salicylic acid (SA) pathway, but interestingly, mildew-induced cell death was not fully suppressed by inactivation of SA signaling. Thus, cell death could be uncoupled from disease resistance, suggesting that cell death is not sufficient for resistance to powdery mildew. ATG2 encodes autophagy-related 2, a protein known to be involved in the early steps of autophagosome biogenesis. The atg2-2 mutant exhibited typical autophagy defects in autophagosome formation. Furthermore, mutations in several other ATG genes, including ATG5, ATG7 and ATG10, exhibited similar powdery mildew resistance and mildew-induced cell death phenotypes. Taken together, our findings provide insights into the role of autophagy in cell death and disease resistance, and may indicate general links between autophagy, senescence, programmed cell death and defense responses in plants.


Plant Journal | 2009

An F-box gene, CPR30, functions as a negative regulator of the defense response in Arabidopsis.

Mingyue Gou; Nan Su; Jun Zheng; Junling Huai; Guangheng Wu; Jinfeng Zhao; Junguang He; Dingzhong Tang; Shuhua Yang; Guoying Wang

Arabidopsis gain-of-resistance mutants, which show HR-like lesion formation and SAR-like constitutive defense responses, were used well as tools to unravel the plant defense mechanisms. We have identified a novel mutant, designated constitutive expresser of PR genes 30 (cpr30), that exhibited dwarf morphology, constitutive resistance to the bacterial pathogen Pseudomonas syringae and the dramatic induction of defense-response gene expression. The cpr30-conferred growth defect morphology and defense responses are dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4 (PAD4), and NONRACE-SPECIFIC DISEASE RESISTANCE 1 (NDR1). Further studies demonstrated that salicylic acid (SA) could partially account for the cpr30-conferred constitutive PR1 gene expression, but not for the growth defect, and that the cpr30-conferred defense responses were NPR1 independent. We observed a widespread expression of CPR30 throughout the plant, and a localization of CPR30-GFP fusion protein in the cytoplasm and nucleus. As an F-box protein, CPR30 could interact with multiple Arabidopsis-SKP1-like (ASK) proteins in vivo. Co-localization of CPR30 and ASK1 or ASK2 was observed in Arabidopsis protoplasts. Based on these results, we conclude that CPR30, a novel negative regulator, regulates both SA-dependent and SA-independent defense signaling, most likely through the ubiquitin-proteasome pathway in Arabidopsis.


Plant Physiology | 2012

SR1, a Calmodulin-Binding Transcription Factor, Modulates Plant Defense and Ethylene-Induced Senescence by Directly Regulating NDR1 and EIN3

Haozhen Nie; Chunzhao Zhao; Guangheng Wu; Yingying Wu; Yongfang Chen; Dingzhong Tang

Plant defense responses are tightly controlled by many positive and negative regulators to cope with attacks from various pathogens. Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE2 (EDR2) is a negative regulator of powdery mildew resistance, and edr2 mutants display enhanced resistance to powdery mildew (Golovinomyces cichoracearum). To identify components acting in the EDR2 pathway, we screened for edr2 suppressors and identified a gain-of-function mutation in SIGNAL RESPONSIVE1 (SR1), which encodes a calmodulin-binding transcription activator. The sr1-4D gain-of-function mutation suppresses all edr2-associated phenotypes, including powdery mildew resistance, mildew-induced cell death, and ethylene-induced senescence. The sr1-4D single mutant is more susceptible to a Pseudomonas syringae pv tomato DC3000 virulent strain and to avirulent strains carrying avrRpt2 or avrRPS4 than the wild type. We show that SR1 directly binds to the promoter region of NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), a key component in RESISTANCE TO PSEUDOMONAS SYRINGAE2-mediated plant immunity. Also, the ndr1 mutation suppresses the sr1-1 null allele, which shows enhanced resistance to both P. syringae pv tomato DC3000 avrRpt2 and G. cichoracearum. In addition, we show that SR1 regulates ethylene-induced senescence by directly binding to the ETHYLENE INSENSITIVE3 (EIN3) promoter region in vivo. Enhanced ethylene-induced senescence in sr1-1 is suppressed by ein3. Our data indicate that SR1 plays an important role in plant immunity and ethylene signaling by directly regulating NDR1 and EIN3.


Science | 2017

Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi

Yina Jiang; Wanxiao Wang; Qiujin Xie; Na Liu; Lixia Liu; Dapeng Wang; Xiaowei Zhang; Chen Yang; Xiao-Ya Chen; Dingzhong Tang; Ertao Wang

Lipid transfer provides symbiotic fungi associated with plant roots with a source of carbon. Food for fungi A wide variety of plants form symbiotic relationships in their roots with arbuscular mycorrhizal fungi. The fungi channel inorganic and micronutrients from soil to the plant, and the plant supplies the fungi with organic nutrients. Jiang et al. and Luginbuehl et al. found that as part of this exchange, the plant supplies lipids to its symbiotic fungi, thus providing the fungi with a robust source of carbon for their metabolic needs. Science, this issue p. 1172; p. 1175 Arbuscular mycorrhizal (AM) fungi facilitate plant uptake of mineral nutrients and draw organic nutrients from the plant. Organic nutrients are thought to be supplied primarily in the form of sugars. Here we show that the AM fungus Rhizophagus irregularis is a fatty acid auxotroph and that fatty acids synthesized in the host plants are transferred to the fungus to sustain mycorrhizal colonization. The transfer is dependent on RAM2 (REQUIRED FOR ARBUSCULAR MYCORRHIZATION 2) and the ATP binding cassette transporter–mediated plant lipid export pathway. We further show that plant fatty acids can be transferred to the pathogenic fungus Golovinomyces cichoracerum and are required for colonization by pathogens. We suggest that the mutualistic mycorrhizal and pathogenic fungi similarly recruit the fatty acid biosynthesis program to facilitate host invasion.


PLOS Genetics | 2014

EDR1 Physically Interacts with MKK4/MKK5 and Negatively Regulates a MAP Kinase Cascade to Modulate Plant Innate Immunity

Chunzhao Zhao; Haozhen Nie; Qiujing Shen; Shuqun Zhang; Wolfgang Lukowitz; Dingzhong Tang

Mitogen-activated protein (MAP) kinase signaling cascades play important roles in the regulation of plant defense. The Raf-like MAP kinase kinase kinase (MAPKKK) EDR1 negatively regulates plant defense responses and cell death. However, how EDR1 functions, and whether it affects the regulation of MAPK cascades, are not well understood. Here, we showed that EDR1 negatively regulates the MKK4/MKK5-MPK3/MPK6 kinase cascade in Arabidopsis. We found that edr1 mutants have highly activated MPK3/MPK6 kinase activity and higher levels of MPK3/MPK6 proteins than wild type. EDR1 physically interacts with MKK4 and MKK5, and this interaction requires the N-terminal domain of EDR1. EDR1 also negatively affects MKK4/MKK5 protein levels. In addition, the mpk3, mkk4 and mkk5 mutations suppress edr1-mediated resistance, and over-expression of MKK4 or MKK5 causes edr1-like resistance and mildew-induced cell death. Taken together, our data indicate that EDR1 physically associates with MKK4/MKK5 and negatively regulates the MAPK cascade to fine-tune plant innate immunity.

Collaboration


Dive into the Dingzhong Tang's collaboration.

Top Co-Authors

Avatar

Yongfang Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Roger W. Innes

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Guangheng Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haozhen Nie

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Simu Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ting Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tingquan Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weida Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yingying Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Cees Waalwijk

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge