Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dinja Oosterhoff is active.

Publication


Featured researches published by Dinja Oosterhoff.


Clinical Cancer Research | 2008

Sunitinib-Induced Myeloid Lineage Redistribution in Renal Cell Cancer Patients: CD1c+ Dendritic Cell Frequency Predicts Progression-Free Survival

Hester van Cruijsen; Astrid A.M. van der Veldt; Laura Vroling; Dinja Oosterhoff; Henk J. Broxterman; Rik J. Scheper; Giuseppe Giaccone; John B. A. G. Haanen; Alfons J.M. van den Eertwegh; Epie Boven; Klaas Hoekman; Tanja D. de Gruijl

Purpose: A disturbed myeloid lineage development with abnormally abundant neutrophils and impaired dendritic cell (DC) differentiation may contribute to tumor immune escape. We investigated the effect of sunitinib, a tyrosine kinase inhibitor of fms-like tyrosine kinase-3, KIT, and vascular endothelial growth factor receptors, on myeloid differentiation in renal cell cancer (RCC) patients. Experimental Design: Twenty-six advanced RCC patients were treated with sunitinib in a 4-week on/2-week off schedule. Enumeration and extensive phenotyping of myeloid subsets in the blood was done at baseline and at weeks 4 and 6 of the first treatment cycle. Baseline patient data were compared with sex- and age-matched healthy donor data. Results: Baseline frequencies of DC subsets were lower in RCC patients than in healthy donors. After 4 weeks of sunitinib treatment, a generalized decrease in myeloid frequencies was observed. Whereas neutrophils and monocytes, which were both abnormally high at baseline, remained low during the 2-week off period, DC rates recovered, resulting in a normalized myeloid lineage distribution. Subsequent to sunitinib treatment, an increase to high levels of myeloid DC (MDC) subset frequencies relative to other myeloid subsets, was specifically observed in patients experiencing tumor regression. Moreover, high CD1c/BDCA-1+ MDC frequencies were predictive for tumor regression and improved progression-free survival. Conclusion: The sunitinib-induced myeloid lineage redistribution observed in advanced RCC patients is consistent with an improved immune status. Immunologic recovery may contribute to clinical efficacy as suggested by the finding of highly increased MDC frequencies relative to other myeloid subsets in patients with tumor regression.


Journal of Immunology | 2006

A postmigrational switch among skin-derived dendritic cells to a macrophage-like phenotype is predetermined by the intracutaneous cytokine balance.

Tanja D. de Gruijl; Claudia C. Sombroek; Sinéad M. Lougheed; Dinja Oosterhoff; Jan Buter; Alfons J.M. van den Eertwegh; Rik J. Scheper

Migration of dendritic cells (DC) to secondary lymphoid organs under proinflammatory conditions coincides with their maturation and acquisition of T cell stimulatory abilities. In contrast, impaired activation of DC, e.g., in tumor-conditioned environments, may hamper their activation and possibly their subsequent migration to lymph nodes, leading to either immunological tolerance or ignorance, respectively. In this study, the influence of cytokines in the peripheral skin microenvironment on the activation state of migrating cutaneous DC was assessed using an ex vivo human skin explant model. We observed a phenotypic shift from mature CD83+ DC to immature CD14+ macrophage-like cells within 7 days subsequent to migration from unconditioned skin. These macrophage-like cells displayed a poor T cell stimulatory ability and lacked expression of CCR7, thus precluding their migration to paracortical T cell areas in the lymph nodes. The balance of suppressive and stimulatory cytokines during the initiation of migration decided the postmigrational fate of DC with IL-10 accelerating and GM-CSF and IL-4 preventing the phenotypic switch, which proved irreversible once established. These observations indicate that, in immunosuppressed environments, a postmigrational DC-to-macrophage shift may hinder T cell activation, but also that it may be prevented by prior conditioning of the tissue microenvironment by GM-CSF and/or IL-4.


British Journal of Cancer | 2002

A fully human anti-Ep-CAM scFv-beta-glucuronidase fusion protein for selective chemotherapy with a glucuronide prodrug

M de Graaf; Epie Boven; Dinja Oosterhoff; I.H. van der Meulen-Muileman; Gerwin Huls; Winald R. Gerritsen; Hidde J. Haisma; H.M. Pinedo

Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme β-glucuronidase. The sequences encoding C28 and human enzyme β-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGκ signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-β-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme β-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug.


British Journal of Cancer | 2002

Secreted and tumour targeted human carboxylesterase for activation of irinotecan

Dinja Oosterhoff; H.M. Pinedo; M de Graaf; T Sone; Frank A.E. Kruyt; V W van Beusechem; Hidde J. Haisma; Winald R. Gerritsen

Irinotecan (CPT-11) is an anticancer agent for the treatment of colon cancer. CPT-11 can be considered as a prodrug, since it needs to be activated into the toxic drug SN-38 by the enzyme carboxylesterase. An approach to achieve tumour specific activation of CPT-11 is to transduce the cDNA encoding carboxylesterase into tumour cells. A secreted form of carboxylesterase may diffuse through a tumour mass and may activate CPT-11 extracellularly. This could enhance the antitumour efficacy by exerting a bystander effect on untransduced cells. In addition a secreted tumour-targeted form of carboxylesterase should prevent leakage of the enzyme from the site of the tumour into the circulation. We have constructed a secreted form of human liver carboxylesterase-2 by deletion of the cellular retention signal and by cloning the cDNA downstream of an Ig kappa leader sequence. The protein was secreted by transfected cells and showed both enzyme activity and efficient CPT-11 activation. To obtain a secreted, tumour-targeted form of carboxylesterase-2 the cDNA encoding the human scFv antibody C28 directed against the epithelial cell adhesion molecule EpCAM, was inserted between the leader sequence and carboxylesterase-2. This fusion protein showed CPT-11 activation and specific binding to EpCAM expressing cells. Importantly, in combination with CPT-11 both recombinant carboxylesterase proteins exerted strong antiproliferative effects on human colon cancer cells. They are, therefore, promising new tools for gene directed enzyme prodrug therapy approaches for the treatment of colon carcinoma with CPT-11.


Cancer Research | 2011

Potent Antitumor Immunity Generated by a CD40-Targeted Adenoviral Vaccine

B.N. Hangalapura; Dinja Oosterhoff; de J. Groot; L. Boon; Thomas Tüting; van den A.J.M. Eertwegh; Winald R. Gerritsen; van V.W. Beusechem; Alexander Pereboev; David T. Curiel; Rik J. Scheper; de T.D. Gruijl

In situ delivery of tumor-associated antigen (TAA) genes into dendritic cells (DC) has great potential as a generally applicable tumor vaccination approach. Although adenoviruses (Ad) are an attractive vaccine vehicle in this regard, Ad-mediated transduction of DCs is hampered by the lack of expression of the Ad receptor CAR on the DC surface. DC activation also requires interaction of CD40 with its ligand CD40L to generate protective T-cell-mediated tumor immunity. Therefore, to create a strategy to target Ads to DCs in vivo, we constructed a bispecific adaptor molecule with the CAR ectodomain linked to the CD40L extracellular domain via a trimerization motif (CFm40L). By targeting Ad to CD40 with the use of CFm40L, we enhanced both transduction and maturation of cultured bone marrow-derived DCs. Moreover, we improved transduction efficiency of DCs in lymph node and splenic cell suspensions in vitro and in skin and vaccination site-draining lymph nodes in vivo. Furthermore, CD40 targeting improved the induction of specific CD8(+) T cells along with therapeutic efficacy in a mouse model of melanoma. Taken together, our findings support the use of CD40-targeted Ad vectors encoding full-length TAA for in vivo targeting of DCs and high-efficacy induction of antitumor immunity.


Journal of Immunology | 2013

Intradermal Delivery of TLR Agonists in a Human Explant Skin Model: Preferential Activation of Migratory Dendritic Cells by Polyribosinic-Polyribocytidylic Acid and Peptidoglycans

Dinja Oosterhoff; Moniek Heusinkveld; Sinéad M. Lougheed; Ilona Kosten; Malin Lindstedt; Sven C. M. Bruijns; Thomas van Es; Yvette van Kooyk; Sjoerd H. van der Burg; Tanja D. de Gruijl

TLR agonists are attractive candidate adjuvants for therapeutic cancer vaccines as they can induce a balanced humoral and T cell–mediated immune response. With a dense network of dendritic cells (DCs) and draining lymphatics, the skin provides an ideal portal for vaccine delivery. Beside direct DC activation, TLR agonists may also induce DC activation through triggering the release of inflammatory mediators by accessory cells in the skin microenvironment. Therefore, a human skin explant model was used to explore the in vivo potential of intradermally delivered TLR agonists to stimulate Langerhans cells and dermal DCs in their natural complex tissue environment. The skin-emigrated DCs were phenotyped and analyzed for T cell stimulatory capacity. We report that, of six tested TLR-agonists, the TLR2 and -3 agonists peptidoglycan (PGN) and polyribosinic-polyribocytidylic acid (Poly I:C) were uniquely able to enhance the T cell–priming ability of skin-emigrated DCs, which, in the case of PGN, was accompanied by Th1 polarization. The enhanced priming capacity of Poly I:C–stimulated DCs was associated with a strong upregulation of appropriate costimulatory molecules, including CD70, whereas that of PGN-stimulated DCs was associated with the release of a broad array of proinflammatory cytokines. Transcriptional profiling further supported the notion that the PGN- and Poly I:C–induced effects were mediated through binding to TLR2/nucleotide-binding oligomerization domain 2 and TLR3/MDA5, respectively. These data warrant further exploration of PGN and Poly I:C, alone or in combination, as DC-targeted adjuvants for intradermal cancer vaccines.


OncoImmunology | 2012

Tumor-mediated inhibition of human dendritic cell differentiation and function is consistently counteracted by combined p38 MAPK and STAT3 inhibition.

Dinja Oosterhoff; Sinéad M. Lougheed; Rieneke van de Ven; Jelle Lindenberg; Hester van Cruijsen; Lotte Hiddingh; Jan Kroon; Alfons J.M. van den Eertwegh; Basav N. Hangalapura; Rik J. Scheper; Tanja D. de Gruijl

Targeting dendritic cells (DC) through the release of suppressive factors is an effective means for tumors to escape immune control. We assessed the involvement of downstream signaling through the JAK2/STAT3 and p38 MAPK pathways in tumor-induced suppression of human DC development. Whereas the JAK2/STAT3 pathway has been pinpointed in mouse studies as a key regulator of myeloid suppression, in human DC this is less well established. We studied the effects of STAT3 inhibition on the suppression of monocyte-derived DC differentiation mediated by a short-list of four predominant suppressive factors and found that pharmacological STAT3 inhibition could only counteract the effects of IL-6. Accordingly, in testing a panel of supernatants derived from 11 cell lines representing various types of solid tumors, STAT3 inhibition only modestly affected the suppressive effects of a minority of supernatants. Importantly, combined interference in the STAT3 and p38 pathways completely prevented inhibition of DC differentiation by all tested supernatants and effected superior DC function, evidenced by increased allogeneic T cell reactivity with elevated IL-12p70/IL-10 ratios and Th1 skewing. Combined STAT3 and p38 inhibition also afforded superior protection against the suppressive effects of primary glioma and melanoma supernatants and induced a shift from CD14+ cells to CD1a+ cells in metastatic melanoma single-cell suspensions, indicating a potential for improved DC differentiation in the tumor microenvironment. We conclude that combined interference in the STAT3 and p38 MAPK signaling pathways is a promising approach to overcome tumor-induced inhibitory signaling in DC precursors and will likely support clinical immunotherapeutic strategies.


PLOS ONE | 2013

IL-10 conditioning of human skin affects the distribution of migratory dendritic cell subsets and functional T cell differentiation

Jelle Lindenberg; Dinja Oosterhoff; Claudia C. Sombroek; Sinéad M. Lougheed; Erik Hooijberg; Anita G. M. Stam; Saskia J. A. M. Santegoets; Henk J. Tijssen; Jan Buter; Herbert M. Pinedo; Alfons J.M. van den Eertwegh; Rik J. Scheper; Hans J. P. M. Koenen; Rieneke van de Ven; Tanja D. de Gruijl

In cancer patients pervasive systemic suppression of Dendritic Cell (DC) differentiation and maturation can hinder vaccination efficacy. In this study we have extensively characterized migratory DC subsets from human skin and studied how their migration and T cell-stimulatory abilities were affected by conditioning of the dermal microenvironment through cancer-related suppressive cytokines. To assess effects in the context of a complex tissue structure, we made use of a near-physiological skin explant model. By 4-color flow cytometry, we identified migrated Langerhans Cells (LC) and five dermis-derived DC populations in differential states of maturation. From a panel of known tumor-associated suppressive cytokines, IL-10 showed a unique ability to induce predominant migration of an immature CD14+CD141+DC-SIGN+ DC subset with low levels of co-stimulatory molecules, up-regulated expression of the co-inhibitory molecule PD-L1 and the M2-associated macrophage marker CD163. A similarly immature subset composition was observed for DC migrating from explants taken from skin overlying breast tumors. Whereas predominant migration of mature CD1a+ subsets was associated with release of IL-12p70, efficient Th cell expansion with a Th1 profile, and expansion of functional MART-1-specific CD8+ T cells, migration of immature CD14+ DDC was accompanied by increased release of IL-10, poor expansion of CD4+ and CD8+ T cells, and skewing of Th responses to favor coordinated FoxP3 and IL-10 expression and regulatory T cell differentiation and outgrowth. Thus, high levels of IL-10 impact the composition of skin-emigrated DC subsets and appear to favor migration of M2-like immature DC with functional qualities conducive to T cell tolerance.


Immunotherapy | 2011

Cross-talk between tumor and myeloid cells: how to tip the balance in favor of antitumor immunity

Jelle J. Lindenberg; Cynthia M. Fehres; Hester van Cruijsen; Dinja Oosterhoff; Tanja D. de Gruijl

Myeloid differentiation is often disturbed in cancer, leading to reduced frequencies of immunostimulatory dendritic cells and an over-representation of immunosuppressive immature myeloid cells, granulocytes and macrophages. As a result of this skewed myeloid differentiation, a highly immunosuppressive myeloid subset becomes prevalent during cancer development; these myeloid-derived suppressor cells are also recruited as a collateral to certain protumorigenic inflammatory processes, resulting in an effective downregulation of T-cell-mediated immune surveillance and antitumor immunity. In this article, some of the important myeloid cell subsets and mediators involved in cancer-related immune suppression are reviewed. Furthermore, cross-talk between tumors and the myeloid compartment, and ways in which it can suppress effective cell-mediated immunity, are discussed, as well as possible therapeutic approaches to tip the balance in favor of antitumor immunity.


Gene Therapy | 2005

Gene-directed enzyme prodrug therapy with carboxylesterase enhances the anticancer efficacy of the conditionally replicating adenovirus AdDelta24

Dinja Oosterhoff; H.M. Pinedo; M A Witlox; Jan E. Carette; Winald R. Gerritsen; V W van Beusechem

Conditionally replicating adenoviruses (CRAds) selectively replicate in and thereby kill cancer cells. The CRAd AdΔ24 with pRb-binding-deficient E1A kills cancer cells efficiently. Arming CRAds with genes encoding prodrug-converting enzymes could allow for enhanced anticancer efficacy by the combined effects of oncolytic replication and local prodrug activation. Here, we investigated combination treatment of human colon cancer cell lines with AdΔ24-type CRAds and gene-directed enzyme prodrug therapy (GDEPT) using two different enzyme/prodrug systems, that is, thymidine kinase/ganciclovir (TK/GCV) and carboxylesterase (CE)/CPT-11. On all three cell lines tested, GDEPT with TK/GCV made CRAd treatment less efficacious. In contrast, expression of a secreted form of CE (sCE2) combined with CPT-11 treatment markedly enhanced the efficacy of AdΔ24 virotherapy. Based on this observation, we constructed an AdΔ24 variant expressing sCE2. In the absence of CPT-11, this new CRAd Ad5-Δ24.E3-sCE2 was similarly effective as its parent in killing human colon cancer cells. Low concentrations of CPT-11 inhibited Ad5-Δ24.E3-sCE2 propagation. Nevertheless, CPT-11 specifically augmented the cytotoxicity of Ad5-Δ24.E3-sCE2 against all three-colon cancer cell lines. Hence, the positive contribution of sCE2/CPT-11 GDEPT to colon cancer cytotoxicity outweighed its negative influence on CRAd propagation. Therefore, CRAd-sCE2/CPT-11 combination therapy appears useful for more effective treatment of colon cancer.

Collaboration


Dive into the Dinja Oosterhoff's collaboration.

Top Co-Authors

Avatar

Tanja D. de Gruijl

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rik J. Scheper

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Epie Boven

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jelle Lindenberg

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rieneke van de Ven

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David T. Curiel

VU University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge