Dion G. Durnford
University of New Brunswick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dion G. Durnford.
Science | 2012
Dana C. Price; Cheong Xin Chan; Hwan Su Yoon; Eun Chan Yang; Huan Qiu; Andreas P. M. Weber; Rainer Schwacke; Jeferson Gross; Nicolas A. Blouin; Chris E. Lane; Adrian Reyes-Prieto; Dion G. Durnford; Jonathan A.D. Neilson; B. Franz Lang; Gertraud Burger; Jürgen M. Steiner; Wolfgang Löffelhardt; Jonathan E. Meuser; Matthew C. Posewitz; Steven G. Ball; Maria Cecilia Arias; Bernard Henrissat; Pedro M. Coutinho; Stefan A. Rensing; Aikaterini Symeonidi; Harshavardhan Doddapaneni; Beverley R. Green; Veeran D. Rajah; Jeffrey L. Boore; Debashish Bhattacharya
Plastid Origins The glaucophytes, represented by the alga Cyanophora paradoxa, are the putative sister group of red and green algae and plants, which together comprise the founding group of photosynthetic eukaryotes, the Plantae. In their analysis of the genome of C. paradoxa, Price et al. (p. 843; see the Perspective by Spiegel) demonstrate a unique origin for the plastid in the ancestor of this supergroup, which retains much of the ancestral diversity in genes involved in carbohydrate metabolism and fermentation, as well as in the gene content of the mitochondrial genome. Moreover, about 3.3% of nuclear genes in C. paradoxa seem to carry a signal of cyanobacterial ancestry, and key genes involved in starch biosynthesis are derived from energy parasites such as Chlamydiae. Rapid radiation, reticulate evolution via horizontal gene transfer, high rates of gene divergence, loss, and replacement, may have diffused the evolutionary signals within this supergroup, which perhaps explains previous difficulties in resolving its evolutionary history. An ancient algal genome suggests a unique origin of the plastid in the ancestor to plants, algae, and glaucophytes. The primary endosymbiotic origin of the plastid in eukaryotes more than 1 billion years ago led to the evolution of algae and plants. We analyzed draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae. C. paradoxa retains ancestral features of starch biosynthesis, fermentation, and plastid protein translocation common to plants and algae but lacks typical eukaryotic light-harvesting complex proteins. Traces of an ancient link to parasites such as Chlamydiae were found in the genomes of C. paradoxa and other Plantae. Apparently, Chlamydia-like bacteria donated genes that allow export of photosynthate from the plastid and its polymerization into storage polysaccharide in the cytosol.
Nature | 2012
Bruce A. Curtis; Goro Tanifuji; Fabien Burki; Ansgar Gruber; Manuel Irimia; Shinichiro Maruyama; Maria Cecilia Arias; Steven G. Ball; Gillian H. Gile; Yoshihisa Hirakawa; Julia F. Hopkins; Alan Kuo; Stefan A. Rensing; Jeremy Schmutz; Aikaterini Symeonidi; Marek Eliáš; Robert J M Eveleigh; Emily K. Herman; Mary J. Klute; Takuro Nakayama; Miroslav Oborník; Adrian Reyes-Prieto; E. Virginia Armbrust; Stephen J. Aves; Robert G. Beiko; Pedro M. Coutinho; Joel B. Dacks; Dion G. Durnford; Naomi M. Fast; Beverley R. Green
Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote–eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.
Journal of Molecular Evolution | 1999
Dion G. Durnford; James A. Deane; S. Tan; Geoffrey I. McFadden; E. Gantt; Beverley R. Green
Abstract. The light-harvesting complexes (LHCs) are a superfamily of chlorophyll-binding proteins present in all photosynthetic eukaryotes. The Lhc genes are nuclear-encoded, yet the pigment–protein complexes are localized to the thylakoid membrane and provide a marker to follow the evolutionary paths of plastids with different pigmentation. The LHCs are divided into the chlorophyll a/b-binding proteins of the green algae, euglenoids, and higher plants and the chlorophyll a/c-binding proteins of various algal taxa. This work examines the phylogenetic position of the LHCs from three additional taxa: the rhodophytes, the cryptophytes, and the chlorarachniophytes. Phylogenetic analysis of the LHC sequences provides strong statistical support for the clustering of the rhodophyte and cryptomonad LHC sequences within the chlorophyll a/c-binding protein lineage, which includes the fucoxanthin–chlorophyll proteins (FCP) of the heterokonts and the intrinsic peridinin–chlorophyll proteins (iPCP) of the dinoflagellates. These associations suggest that plastids from the heterokonts, haptophytes, cryptomonads, and the dinoflagellate, Amphidinium, evolved from a red algal-like ancestor. The Chlorarachnion LHC is part of the chlorophyll a/b-binding protein assemblage, consistent with pigmentation, providing further evidence that its plastid evolved from a green algal secondary endosymbiosis. The Chlorarachnion LHC sequences cluster with the green algal LHCs that are predominantly associated with photosystem II (LHCII). This suggests that the green algal endosymbiont that evolved into the Chlorarachnion plastid was acquired following the emergence of distinct LHCI and LHCII complexes.
Plant Physiology | 2007
Adam G. Koziol; Tudor Borza; Ken-ichiro Ishida; Patrick J. Keeling; Robert W. Lee; Dion G. Durnford
The light-harvesting complexes (LHCs) of land plants and green algae have essential roles in light capture and photoprotection. Though the functional diversity of the individual LHC proteins are well described in many land plants, the extent of this family in the majority of green algal groups is unknown. To examine the evolution of the chlorophyll a/b antennae system and to infer its ancestral state, we initiated several expressed sequence tag projects from a taxonomically broad range of chlorophyll a/b-containing protists. This included representatives from the Ulvophyceae (Acetabularia acetabulum), the Mesostigmatophyceae (Mesostigma viride), and the Prasinophyceae (Micromonas sp.), as well as one representative from each of the Euglenozoa (Euglena gracilis) and Chlorarachniophyta (Bigelowiella natans), whose plastids evolved secondarily from a green alga. It is clear that the core antenna system was well developed prior to green algal diversification and likely consisted of the CP29 (Lhcb4) and CP26 (Lhcb5) proteins associated with photosystem II plus a photosystem I antenna composed of proteins encoded by at least Lhca3 and two green algal-specific proteins encoded by the Lhca2 and 9 genes. In organisms containing secondary plastids, we found no evidence for orthologs to the plant/algal antennae with the exception of CP29. We also identified PsbS homologs in the Ulvophyceae and the Prasinophyceae, indicating that this distinctive protein appeared prior to green algal diversification. This analysis provides a snapshot of the antenna systems in diverse green algae, and allows us to infer the changing complexity of the antenna system during green algal evolution.
Photosynthesis Research | 2010
Jonathan A.D. Neilson; Dion G. Durnford
Eukaryotes acquired photosynthetic metabolism over a billion years ago, and during that time the light-harvesting antennae have undergone significant structural and functional divergence. The antenna systems are generally used to harvest and transfer excitation energy into the reaction centers to drive photosynthesis, but also have the dual role of energy dissipation. Phycobilisomes formed the first antenna system in oxygenic photoautotrophs, and this soluble protein complex continues to be the dominant antenna in extant cyanobacteria, glaucophytes, and red algae. However, phycobilisomes were lost multiple times during eukaryotic evolution in favor of a thylakoid membrane-integral light-harvesting complex (LHC) antenna system found in the majority of eukaryotic taxa. While photosynthesis spread across different eukaryotic kingdoms via endosymbiosis, the antenna systems underwent extensive modification as photosynthetic groups optimized their light-harvesting capacity and ability to acclimate to changing environmental conditions. This review discusses the different classes of LHCs within photosynthetic eukaryotes and examines LHC diversification in different groups in a structural and functional context.
Protist | 2000
James A. Deane; Martin Fraunholz; Vanessa Su; Uwe G. Maier; William Martin; Dion G. Durnford; Geoffrey I. McFadden
Cryptomonads and chlorarachniophytes acquired photosynthesis independently by engulfing and retaining eukaryotic algal cells. The nucleus of the engulfed cells (known as a nucleomorph) is much reduced and encodes only a handful of the numerous essential plastid proteins normally encoded by the nucleus of chloroplast-containing organisms. In cryptomonads and chlorarachniophytes these proteins are thought to be encoded by genes in the secondary host nucleus. Genes for these proteins were potentially transferred from the nucleomorph (symbiont nucleus) to the secondary host nucleus; nucleus to nucleus intracellular gene transfers. We isolated complementary DNA clones (cDNAs) for chlorophyll-binding proteins from a cryptomonad and a chlorarachniophyte. In each organism these genes reside in the secondary host nuclei, but phylogenetic evidence, and analysis of the targeting mechanisms, suggest the genes were initially in the respective nucleomorphs (symbiont nuclei). Implications for origins of secondary endosymbiotic algae are discussed.
Eukaryotic Cell | 2006
Dion G. Durnford; Michael W. Gray
ABSTRACT The plastid of Euglena gracilis was acquired secondarily through an endosymbiotic event with a eukaryotic green alga, and as a result, it is surrounded by a third membrane. This membrane complexity raises the question of how the plastid proteins are targeted to and imported into the organelle. To further explore plastid protein targeting in Euglena, we screened a total of 9,461 expressed sequence tag (EST) clusters (derived from 19,013 individual ESTs) for full-length proteins that are plastid localized to characterize their targeting sequences and to infer potential modes of translocation. Of the 117 proteins identified as being potentially plastid localized whose N-terminal targeting sequences could be inferred, 83 were unique and could be classified into two major groups. Class I proteins have tripartite targeting sequences, comprising (in order) an N-terminal signal sequence, a plastid transit peptide domain, and a predicted stop-transfer sequence. Within this class of proteins are the lumen-targeted proteins (class IB), which have an additional hydrophobic domain similar to a signal sequence and required for further targeting across the thylakoid membrane. Class II proteins lack the putative stop-transfer sequence and possess only a signal sequence at the N terminus, followed by what, in amino acid composition, resembles a plastid transit peptide. Unexpectedly, a few unrelated plastid-targeted proteins exhibit highly similar transit sequences, implying either a recent swapping of these domains or a conserved function. This work represents the most comprehensive description to date of transit peptides in Euglena and hints at the complex routes of plastid targeting that must exist in this organism.
Journal of Phycology | 1999
R. Michael L. McKay; Alexander F. Yakunin; Dion G. Durnford; Richard J. Geider
Despite recognition that Fe availability is significant in regulating oceanic production in some regions, the biogeochemistry of this trace element is poorly understood. To complement contemporary methods of analytical chemistry, we have used an immunological approach to monitor the Fe nutrition of marine phytoplankton. In prokaryotes and numerous microalgae, the redox catalyst ferredoxin is functionally replaced by flavodoxin during periods of Fe deficiency. In this study, antibodies were raised against ferredoxin purified from a marine diatom, and their utility as a diagnostic indicator was assessed. A species survey demonstrated broad reactivity with both pennate and centric diatoms and additionally with several nondiatom taxa. In batch cultures of the diatom Phaeodactylum tricornutum Bohlin, in which Fe levels were varied, accumulation of ferredoxin varied with the physiological state of the culture; in unimpaired cells (Fv/Fm≥ 0.65), ferredoxin levels were high, whereas levels dropped markedly in cells experiencing even slight photochemical impairment. Accumulation of flavodoxin varied inversely with that of ferredoxin. An experiment was performed to demonstrate the temporal pattern of accumulation of ferredoxin upon recovery from Fe limitation. Prior to Fe amendment, cells were physiologically impaired (chlorotic, Fv/Fm < 0.3) and contained flavodoxin but no detectable ferredoxin. Following addition of Fe, constraints on photochemistry were relaxed within hours. Coinciding with this, levels of flavodoxin declined, whereas ferredoxin was accumulated to high levels within 8 h.
Journal of Phycology | 1990
Susan E. Douglas; Dion G. Durnford; Clifford W. Modern
The Chloroplast‐encoded gene for the large subunit of ribulose‐1, 5‐bisphosphate carboxylase/oxygenase (Rubisco) from the marine chlorophyll c2‐, phycobiliprotein‐containing alga, Cryptomonas φ was cloned, sequenced and compared to representatives from other groups of photosynthetic organisms. The coding sequence was 1464 base pairs(bp) and encoded a polypeptide of 488 amino acids. The small subunit of Rubisco was located 83 bp 3′ to the large subunit and was co‐transcribed. A 5 bp sequence, 5′ of the initiator methionine codons of both the large and small subunits, may represent ribosomal binging sites. The start of transcription was identified by primer extension studies and putative promotor sequences were found. This study is the first report of the sequence for the large subunit of Rubisco from a chromophyte alga, and its potential as phylogenetic indicator for algal plastids sis discussed.
Plant Physiology | 2004
Yi-Bu Chen; Dion G. Durnford; Michal Koblizek; Paul G. Falkowski
We identify four novel DNA-binding complexes in the nuclear-encoded Lhcb1 promoter of the chlorophyte alga Dunaliella tertiolecta that are regulated by photosynthetic pathways in the plastid. The binding activities of three of the complexes were positively correlated with time-dependent changes in Lhcb1 transcript abundance, implicating their roles as transcriptional enhancers in a retrograde signal transduction pathway. Using a combination of inhibitors, uncouplers, and antimycin A, and by following the kinetic pattern of gene regulation, we infer two different sensors in the signal transduction pathway. On short time scales of 0.5 to about 4 h, the transthylakoid membrane potential appears to be a critical determinant of gene expression, whereas on time scales of 8 h or longer, the redox state of the plastoquinone pool becomes increasingly more important. The differentiation of these two types of signals was observed in parallel effects on gene transcription and on the patterns of DNA-binding activities in the Lhcb1 promoter. These signals appear to be transduced at the nuclear level via a coordinated ensemble of DNA-binding complexes located between −367 and −188 bp from the start codon of the gene. The regulation of these elements allows the cell to up- or down-regulate the expression on Lhcb1 in response to changes in irradiance.