Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dionisia Sepúlveda is active.

Publication


Featured researches published by Dionisia Sepúlveda.


BMC Microbiology | 2008

Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous

Jennifer Alcaíno; Salvador Barahona; Marisela Carmona; Carla Lozano; Andrés Marcoleta; Mauricio Niklitschek; Dionisia Sepúlveda; Marcelo Baeza; Víctor Cifuentes

BackgroundThe yeast Xanthophyllomyces dendrorhous synthesizes astaxanthin, a carotenoid with high commercial interest. The proposed biosynthetic route in this organism is isopentenyl-pyrophosphate (IPP) → geranyleranyl pyrophosphate (GGPP) → phytoene → lycopene → β-carotene → astaxanthin. Recently, it has been published that the conversion of β-carotene into astaxanthin requires only one enzyme, astaxanthin synthase or CrtS, encoded by crtS gene. This enzyme belongs to the cytochrome P450 protein family.ResultsIn this work, a crtR gene was isolated from X. dendrorhous yeast, which encodes a cytochrome P450 reductase (CPR) that provides CrtS with the necessary electrons for substrate oxygenation. We determined the structural organization of the crtR gene and its location in the yeast electrophoretic karyotype. Two transformants, CBSTr and T13, were obtained by deleting the crtR gene and inserting a hygromycin B resistance cassette. The carotenoid composition of the transformants was altered in relation to the wild type strain. CBSTr forms yellow colonies because it is unable to produce astaxanthin, hence accumulating β-carotene. T13 forms pale colonies because its astaxanthin content is reduced and its β-carotene content is increased.ConclusionIn addition to the crtS gene, X. dendrorhous requires a novel gene, crtR, for the conversion of β-carotene to astaxanthin.


Biological Research | 2008

Genomic organization of the structural genes controlling the astaxanthin biosynthesis pathway of Xanthophyllomyces dendrorhous

Mauricio Niklitschek; Jennifer Alcaíno; Salvador Barahona; Dionisia Sepúlveda; Carla Lozano; Marisela Carmona; Andrés Marcoleta; Claudio Martínez; Patricia Lodato; Marcelo Baeza; Víctor Cifuentes

The cloning and nucleotide sequence of the genes (idi, crtE, crtYB, crtl and crtS) controlling the astaxanthin biosynthesis pathway of the wild-type ATCC 24230 strain of Xanthophyllomyces dendrorhous in their genomic and cDNA version were obtained. The idi, crtE, crtYB, crtl and crtS genes were cloned, as fragments of 10.9, 11.5, 15.8, 5.9 and 4 kb respectively. The nucleotide sequence data analysis indicates that the idi, crtE, crtYB, crtl and crtS genes have 4, 8,4, 11, and 17 introns and 5, 9, 5, 12 and 18 exons respectively. In addition, a highly efficient site-directed mutagenesis system was developed by transformation by integration, followed by mitotic recombination (the double recombinant method). Heterozygote idi (idi+/idi-::hph), crtE (crtE+/crtE-::hph), crtYB (crtYB+/crtYB-::hph), crtI (crtI+/crtI-::hph) and crtS (crtS+/crtS-::hph) and homozygote mutants crtYB (crtYB-::hph/crtYB-::hph), crtI (crtI-::hph/crtI-::hph) and crtS (crtS-::hph/crtS-::hph) were constructed. All the heterozygote mutants have a pale phenotype and produce less carotenoids than the wild-type strain. The genetic analysis of the crtYB, crtl and crtS loci in the wild-type, heterozygote, and homozygote give evidence of the diploid constitution of ATCC 24230 strains. In addition, the cloning of a truncated form of the crtYB that lacks 153 amino acids of the N-terminal region derived from alternatively spliced mRNA was obtained. Their heterologous expression in Escherichia coli carrying the carotenogenic cluster of Erwinia uredovora result in trans-complementation and give evidence of its functionality in this bacterium, maintaining its phytoene synthase activity but not the lycopene cyclase activity.


BMC Microbiology | 2012

Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61) in Xanthophyllomyces dendrorhous

Iris Loto; María Soledad Gutiérrez; Salvador Barahona; Dionisia Sepúlveda; Pilar Martinez-Moya; Marcelo Baeza; Víctor Cifuentes; Jennifer Alcaíno

BackgroundXanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, which is a carotenoid with a great biotechnological impact. The ergosterol and carotenoid synthesis pathways are derived from the mevalonate pathway, and in both pathways, cytochrome P450 enzymes are involved.ResultsIn this study, we isolated and described the X. dendrorhous CYP61 gene, which encodes a cytochrome P450 involved in ergosterol biosynthesis. This gene is composed of nine exons and encodes a 526 amino acid polypeptide that shares significant percentages of identity and similitude with the C22-sterol desaturase, CYP61, from other fungi. Mutants derived from different parental strains were obtained by disrupting the CYP61 gene with an antibiotic selection marker. These mutants were not able to produce ergosterol and accumulated ergosta-5,8,22-trien-3-ol and ergosta-5,8-dien-3-ol. Interestingly, all of the mutants had a more intense red color phenotype than their respective parental strains. The carotenoid composition was qualitatively and quantitatively analyzed by RP-HPLC, revealing that the carotenoid content was higher in the mutant strains without major changes in their composition. The expression of the HMGR gene, which encodes an enzyme involved in the mevalonate pathway (3-hydroxy-3-methylglutaryl-CoA reductase), was analyzed by RT-qPCR showing that its transcript levels are higher in the CYP61 mutants.ConclusionsThese results suggest that in X. dendrorhous, ergosterol regulates HMGR gene expression by a negative feedback mechanism and in this way; it contributes in the regulation of the carotenoid biosynthesis.


Fems Yeast Research | 2011

Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source

Aniela Wozniak; Carla Lozano; Salvador Barahona; Mauricio Niklitschek; Andrés Marcoleta; Jennifer Alcaíno; Dionisia Sepúlveda; Marcelo Baeza; Víctor Cifuentes

Xanthophyllomyces dendrorhous is a basidiomycetous yeast of considerable biotechnological interest because it synthesizes astaxanthin as its main carotenoid. The carotenoid production increases when it is grown using nonfermentable compounds as the sole carbon source. This work analyzes the expression of the carotenogenic genes and their relationship with the amount and types of carotenoids produced when X. dendrorhous is grown using a nonfermentable (succinate) or a fermentable carbon source (glucose). When X. dendrorhous is grown in succinate, carotenoid production is approximately three times higher than when it is grown in glucose. Moreover, carotenoid biosynthesis occurs at the start of the growth cycle when X. dendrorhous is grown in succinate, whereas when it is grown in glucose, carotenoids are produced at the end of the exponential phase. Additionally, we observed that some carotenogenic genes, such as alternative transcripts of crtYB and crtI, are differentially expressed when the yeast is grown in these carbon sources; other genes, such as crtS, exhibit a similar pattern of expression. Our data indicate that transcriptional regulation is not sufficient to explain the differences in carotenoid production between the two culture conditions, indicating that additional regulatory mechanisms may be operating in the carotenogenic pathway of X. dendrorhous.


PLOS ONE | 2014

Functional Characterization of the Xanthophyllomyces dendrorhous Farnesyl Pyrophosphate Synthase and Geranylgeranyl Pyrophosphate Synthase Encoding Genes That Are Involved in the Synthesis of Isoprenoid Precursors

Jennifer Alcaíno; Ignacio Romero; Mauricio Niklitschek; Dionisia Sepúlveda; María Cecilia Rojas; Marcelo Baeza; Víctor Cifuentes

The yeast Xanthophyllomyces dendrorhous synthesizes the carotenoid astaxanthin, which has applications in biotechnology because of its antioxidant and pigmentation properties. However, wild-type strains produce too low amounts of carotenoids to be industrially competitive. Considering this background, it is indispensable to understand how the synthesis of astaxanthin is controlled and regulated in this yeast. In this work, the steps leading to the synthesis of the carotenoid precursor geranylgeranyl pyrophosphate (GGPP, C20) in X. dendrorhous from isopentenyl pyrophosphate (IPP, C5) and dimethylallyl pyrophosphate (DMAPP, C5) was characterized. Two prenyl transferase encoding genes, FPS and crtE, were expressed in E. coli. The enzymatic assays using recombinant E. coli protein extracts demonstrated that FPS and crtE encode a farnesyl pyrophosphate (FPP, C15) synthase and a GGPP-synthase, respectively. X. dendrorhous FPP-synthase produces geranyl pyrophosphate (GPP, C10) from IPP and DMAPP and FPP from IPP and GPP, while the X. dendrorhous GGPP-synthase utilizes only FPP and IPP as substrates to produce GGPP. Additionally, the FPS and crtE genes were over-expressed in X. dendrorhous, resulting in an increase of the total carotenoid production. Because the parental strain is diploid, the deletion of one of the alleles of these genes did not affect the total carotenoid production, but the composition was significantly altered. These results suggest that the over-expression of these genes might provoke a higher carbon flux towards carotenogenesis, most likely involving an earlier formation of a carotenogenic enzyme complex. Conversely, the lower carbon flux towards carotenogenesis in the deletion mutants might delay or lead to a partial formation of a carotenogenic enzyme complex, which could explain the accumulation of astaxanthin carotenoid precursors in these mutants. In conclusion, the FPS and the crtE genes represent good candidates to manipulate to favor carotenoid biosynthesis in X. dendrorhous.


World Journal of Microbiology & Biotechnology | 2000

Isolation of infective and effective Frankia strains from root nodules of Alnus acuminata (Betulaceae).

Margarita Carú; A. Becerra; Dionisia Sepúlveda; Angel Cabello

Two Frankia strains were isolated from root nodules of Alnus acuminata collected in the Tucumano-oranense forest, Argentina. Monosporal cultures were obtained by plating a spore suspension of each strain and isolating a single colony. The strains (named AacI and AacIII) showed branched mycelia with polymorphic sporangia and NIR-vesicles. They differed in their ability to use carbon sources: the AacI strain grew well on pyruvate, while the AacIII strain grew on mineral medium supplemented with glucose or, alternatively, with sucrose. The two strains were sensitive to oleandomycin, erythromycin, kanamycin, penicillin G, streptomycin and chloramphenicol at 5 μg/ml. The AcIII strain exhibited a moderate resistance to rifampicin, ampicillin and vancomycin. The nitrogenase activity in vitro of the strains was significantly higher in basal medium without nitrogen than that determined in the presence of ammonium chloride. Both strains were infective on seedlings of Alnus glutinosa, inducing an approximately similar percentage of nodulated plants (80%), although strain AacIII produced a higher number of nodules per plant (≤15) than strain AacI (≤6). They were also effective for nitrogen fixation in planta, determined by the acetylene reduction assay.


BMC Genomics | 2015

Codon usage and codon context bias in Xanthophyllomyces dendrorhous

Marcelo Baeza; Jennifer Alcaíno; Salvador Barahona; Dionisia Sepúlveda; Víctor Cifuentes

BackgroundSynonymous codons are used differentially in organisms from the three domains of life, a phenomenon referred to as codon usage bias. In addition, codon pair bias, particularly in the 3’ codon context, has also been described in several organisms and is associated with the accuracy and rate of translation. An improved understanding of both types of bias is important for the optimization of heterologous protein expression, particularly in biotechnologically important organisms, such as the yeast Xanthophyllomyces dendrorhous, a promising bioresource for the carotenoid astaxanthin. Using genomic and transcriptomic data, the codon usage and codon context biases of X. dendrorhous open reading frames (ORFs) were analyzed to determine their expression levels, GC% and sequence lengths. X. dendrorhous totiviral ORFs were also included in these analyses.ResultsA total of 1,695 X. dendrorhous ORFs were identified through comparison with sequences in multiple databases, and the intron-exon structures of these sequences were determined. Although there were important expression variations among the ORFs under the studied conditions (different phases of growth and available carbon sources), most of these sequences were highly expressed under at least one of the analyzed conditions. Independent of the culture conditions, the highly expressed genes showed a strong bias in both codon usage and the 3’ context, with a minor association with the GC% and no relationship to the sequence length. The codon usage and codon-pair bias of the totiviral ORFs were highly variable with no similarities to the host ORFs.ConclusionsThere is a direct relation between the level of gene expression and codon usage and 3′ context bias in X. dendrorhous, which is more evident for ORFs that are expressed at the highest levels under the studied conditions. However, there is no direct relation between the totiviral ORF biases and the host ORFs.


Journal of Basic Microbiology | 2009

Isolation, characterization and long term preservation of mutant strains of Xanthophyllomyces dendrorhous

Marcelo Baeza; Patricio Retamales; Dionisia Sepúlveda; Patricia Lodato; Antonio Jiménez; Víctor Cifuentes

The yeast Xanthophyllomyces dendrorhous is biotechnologically important due to its ability to produce the pigment astaxanthin, but is poorly understood at the genetic level. This is mainly because its preservation is difficult and many of the mutants obtained are unstable. The objectives of the present work were (i) the mutagenesis X. dendrorhous and, (ii) isolation of mutants with auxotrophic markers suitable for genetic studies of the carotenogenesis pathway and sexual cycle. Additionally, two kinds of preservation methods at the laboratory level were tested for the storage of strains. A collection of X. dendrorhous mutants affected in the production of carotenoid pigments or development of sexual structures and auxotrophic requirements were isolated by treatment with N‐methyl‐N′‐nitro‐N‐nitrosoguanidine and the antibiotic nystatin. From a detailed analysis about the requirements of auxotrophic mutants the ARG7, ARG3 and PRO3 loci can be defined in this yeast. Among the methods assayed for the long‐term preservation of X. dendrorhous strains, the dehydrated gelatin drop method showed the highest recovery of viable yeast after storage for 65 months. No changes in auxotrophic properties and in macro or micro morphology were observed after applying the latter method. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)


World Journal of Microbiology & Biotechnology | 2015

Identification and analysis of metabolite production with biotechnological potential in Xanthophyllomyces dendrorhous isolates

Gabriela Contreras; Salvador Barahona; Dionisia Sepúlveda; Marcelo Baeza; Víctor Cifuentes; Jennifer Alcaíno

Antarctic microorganisms have developed different strategies to live in their environments, including modifications to their membrane components to regulate fluidity and the production of photoprotective metabolites such as carotenoids. Three yeast colonies (ANCH01, ANCH06 and ANCH08) were isolated from soil samples collected at King George Island, which according to their rDNA sequence analyses, were determined to be Xanthophyllomyces dendrorhous. This yeast is of biotechnological interest, because it can synthesize astaxanthin as its main carotenoid, which is a powerful antioxidant pigment used in aquaculture. Then, the aim of this work was to characterize the ANCH isolates at their molecular and phenotypic level. The isolates did not display any differences in their rDNA and COX1 gene nucleotide sequences. However, ANCH01 produces approximately sixfold more astaxanthin than other wild type strains. Moreover, even though ANCH06 and ANCH08 produce astaxanthin, their main carotenoid was β-carotene. In contrast to other X. dendrorhous strains, the ANCH isolates did not produce mycosporines. Finally, the ANCH isolates had a higher proportion of polyunsaturated fatty acids than other wild type strains. In conclusion, the reported X. dendrorhous isolates are phenotypically different from other wild type strains, including characteristics that could make them more resistant and better able to inhabit their original habitat, which may also have biotechnological potential.


Plant and Soil | 2003

Infectivity and effectivity of Frankia strains from the Rhamnaceae family on different actinorhizal plants

Margarita Carú; Gloria Mosquera; Lorena Bravo; Rafael Guevara; Dionisia Sepúlveda; Angel Cabello

Ten strains of Frankia isolated from root nodules of plant species from five genera of the host family Rhamnaceae were assayed in cross inoculation assays. They were tested on host plants belonging to four actinorhizal families: Trevoa trinervis (Rhamnaceae), Elaeagnus angustifolia (Elaeagnaceae), Alnus glutinosa (Betulaceae) and Casuarina cunninghamiana (Casuarinaceae). All Frankia strains from the Rhamnaceae were able to infect and nodulate both T. trinervis and E. angustifolia. Strain ChI4 isolated from Colletia hystrix was also infective on Alnus glutinosa. All nodules showed a positive acetylene reduction indicating that the microsymbionts used as inoculants were effective in nitrogen fixation. The results suggest that Frankia strains from Rhamnaceae belong to the Elaeagnus-infective subdivision of the genus Frankia.

Collaboration


Dive into the Dionisia Sepúlveda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge