Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dioze Guadagnini is active.

Publication


Featured researches published by Dioze Guadagnini.


PLOS Biology | 2010

IL-6 and IL-10 Anti-Inflammatory Activity Links Exercise to Hypothalamic Insulin and Leptin Sensitivity through IKKβ and ER Stress Inhibition

Eduardo R. Ropelle; Marcelo B.S. Flores; Dennys E. Cintra; Guilherme Z. Rocha; José Rodrigo Pauli; Joseane Morari; Cláudio T. De Souza; Juliana C. Moraes; Patrícia O. Prada; Dioze Guadagnini; Rodrigo Miguel Marin; Alexandre G. Oliveira; Taize M. Augusto; Hernandes F. Carvalho; Lício A. Velloso; Mario J.A. Saad; José B.C. Carvalheira

Physical activity confers beneficial metabolic effects by inducing anti-inflammatory activity in the hypothalamus region of the brain in rodents, resulting in a reorganization of the set point of nutritional balance and reduced insulin and leptin resistance.


Diabetes | 2011

Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats.

Alexandre G. Oliveira; Bruno M. Carvalho; Natália Tobar; Eduardo R. Ropelle; José Rodrigo Pauli; Renata A. Bagarolli; Dioze Guadagnini; José B.C. Carvalheira; Mario J.A. Saad

OBJECTIVE Insulin resistance in diet-induced obesity (DIO) is associated with a chronic systemic low-grade inflammation, and Toll–like receptor 4 (TLR4) plays an important role in the link among insulin resistance, inflammation, and obesity. The current study aimed to analyze the effect of exercise on TLR4 expression and activation in obese rats and its consequences on insulin sensitivity and signaling. RESEARCH DESIGN AND METHODS The effect of chronic and acute exercise was investigated on insulin sensitivity, insulin signaling, TLR4 activation, c-Jun NH2-terminal kinase (JNK) and IκB kinase (IKKβ) activity, and lipopolysaccharide (LPS) serum levels in tissues of DIO rats. RESULTS The results showed that chronic exercise reduced TLR4 mRNA and protein expression in liver, muscle, and adipose tissue. However, both acute and chronic exercise blunted TLR4 signaling in these tissues, including a reduction in JNK and IKKβ phosphorylation and IRS-1 serine 307 phosphorylation, and, in parallel, improved insulin-induced IR, IRS-1 tyrosine phosphorylation, and Akt serine phosphorylation, and reduced LPS serum levels. CONCLUSIONS Our results show that physical exercise in DIO rats, both acute and chronic, induces an important suppression in the TLR4 signaling pathway in the liver, muscle, and adipose tissue, reduces LPS serum levels, and improves insulin signaling and sensitivity. These data provide considerable progress in our understanding of the molecular events that link physical exercise to an improvement in inflammation and insulin resistance.


Diabetes | 2013

Targeted Disruption of Inducible Nitric Oxide Synthase Protects Against Aging, S -Nitrosation, and Insulin Resistance in Muscle of Male Mice

Eduardo R. Ropelle; José Rodrigo Pauli; Dennys E. Cintra; Adelino Silva; Cláudio T. De Souza; Dioze Guadagnini; Bruno M. Carvalho; Andrea M. Caricilli; Carlos K. Katashima; Marco Antonio Carvalho-Filho; Sandro M. Hirabara; Rui Curi; Lício A. Velloso; Mario J.A. Saad; José B.C. Carvalheira

Accumulating evidence has demonstrated that S-nitrosation of proteins plays a critical role in several human diseases. Here, we explored the role of inducible nitric oxide synthase (iNOS) in the S-nitrosation of proteins involved in the early steps of the insulin-signaling pathway and insulin resistance in the skeletal muscle of aged mice. Aging increased iNOS expression and S-nitrosation of major proteins involved in insulin signaling, thereby reducing insulin sensitivity in skeletal muscle. Conversely, aged iNOS-null mice were protected from S-nitrosation–induced insulin resistance. Moreover, pharmacological treatment with an iNOS inhibitor and acute exercise reduced iNOS-induced S-nitrosation and increased insulin sensitivity in the muscle of aged animals. These findings indicate that the insulin resistance observed in aged mice is mainly mediated through the S-nitrosation of the insulin-signaling pathway.


Diabetes | 2014

Fractalkine (CX3CL1) Is Involved in the Early Activation of Hypothalamic Inflammation in Experimental Obesity

Joseane Morari; Gabriel F. Anhê; Lucas F. Nascimento; Rodrigo Ferreira de Moura; Daniela S. Razolli; Carina Solon; Dioze Guadagnini; Gabriela Freitas Pereira de Souza; Alexandre H. Mattos; Natália Tobar; Celso Dario Ramos; Vinícius D. B. Pascoal; Mario J.A. Saad; Iscia Lopes-Cendes; Juliana C. Moraes; Lício A. Velloso

Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow–derived cells or only in bone marrow–derived cells. We show that a functional TLR4 in bone marrow–derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow–derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes.


Endocrinology | 2012

Hepatocyte Growth Factor Plays a Key Role in Insulin Resistance-Associated Compensatory Mechanisms

Tiago G. Araújo; Alexandre G. Oliveira; Bruno M. Carvalho; Dioze Guadagnini; André Otávio Peres Protzek; José B.C. Carvalheira; Antonio C. Boschero; Mario J.A. Saad

Insulin resistance is present in obesity and in type 2 diabetes and is associated with islet cell hyperplasia and hyperinsulinemia, but the driving forces behind this compensatory mechanism are incompletely understood. Previous data have suggested the involvement of an unknown circulating insulin resistance-related β-cell growth factor. In this context, looking for candidates to be a circulating factor, we realized that hepatocyte growth factor (HGF) is a strong candidate as a link between insulin resistance and increased mass of islets/hyperinsulinemia. Our approach aimed to show a possible cause-effect relationship between increase in circulating HGF levels and compensatory islet hyperplasia/hyperinsulinemia by showing the strength of the association, whether or not is a dose-dependent response, the temporality, consistency, plausibility, and reversibility of the association. In this regard, our data showed: 1) a strong and consistent correlation between HGF and the compensatory mechanism in three animal models of insulin resistance; 2) HGF increases β-cell mass in a dose-dependent manner; 3) blocking HGF shuts down the compensatory mechanisms; and 4) an increase in HGF levels seems to precede the compensatory response associated with insulin resistance, indicating that these events occur in a sequential mode. Additionally, blockages of HGF receptor (Met) worsen the impaired insulin-induced insulin signaling in liver of diet-induced obesity rats. Overall, our data indicate that HGF is a growth factor playing a key role in islet mass increase and hyperinsulinemia in diet-induced obesity rats and suggest that the HGF-Met axis may have a role on insulin signaling in the liver.


Endocrinology | 2012

Double-Stranded RNA-Activated Protein Kinase Is a Key Modulator of Insulin Sensitivity in Physiological Conditions and in Obesity in Mice

Marco Antonio Carvalho-Filho; Bruno M. Carvalho; Alexandre G. Oliveira; Dioze Guadagnini; Mirian Ueno; Marília M. Dias; Daniela Miti Tsukumo; Sandro M. Hirabara; L. F. Reis; Rui Curi; José B.C. Carvalheira; Mario J.A. Saad

The molecular integration of nutrient- and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of κB kinase β. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of κB kinase β phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity.


Endocrinology | 2011

Diacerhein Improves Glucose Tolerance and Insulin Sensitivity in Mice on a High-Fat Diet

Natália Tobar; Alexandre G. Oliveira; Dioze Guadagnini; Renata A. Bagarolli; Guilherme Z. Rocha; Tiago G. Araújo; Junia Carolina Santos-Silva; Ricardo de Lima Zollner; Luiz H. B. Boechat; José B.C. Carvalheira; Patrícia O. Prada; Mario J.A. Saad

Obesity and type 2 diabetes are characterized by insulin resistance, and the common basis of these events is a chronic and systemic inflammatory process marked by the activation of the c-Jun N-terminal kinase (JNK) and inhibitor-κB kinase (IKKβ)/nuclear factor-κB (NFκB) pathways, up-regulated cytokine synthesis, and endoplasmic reticulum dysfunction. The aim of this study was to evaluate the effects of diacerhein administration, an antiinflammatory drug that reduces the levels of inflammatory cytokines, on insulin sensitivity and signaling in diet-induced obese (DIO) mice. Swiss mice were fed with conventional chow (control group) or a high-fat diet (DIO group). Later, DIO mice were randomly subdivided into a new subgroup (DAR) that received 20 mg/kg diacerhein for 10 d. Western blotting was used to quantify the expression and phosphorylation of insulin receptor, insulin receptor substrate 1, and Akt and of inflammatory mediators that modulate insulin signaling in a negative manner (IKKβ, JNK, and inducible nitric oxide synthase). We show here, for the first time, that the administration of diacerhein in DIO mice improved endoplasmic reticulum stress, reduced JNK and IKKβ phosphorylation, and resulted in a marked improvement in fasting glucose, a decrease in macrophage infiltration in adipose tissue, and a reduced expression and activity of proinflammatory mediators accompanied by an improvement in the insulin signaling mainly in the liver and adipose tissue. Taken together, these results indicate that diacerhein treatment improves insulin sensitivity in obesity, mediated by the reversal of subclinical inflammation, and that this drug may be an alternative therapy for insulin resistance.


Obesity | 2013

Acute exercise induces a phenotypic switch in adipose tissue macrophage polarization in diet‐induced obese rats

Alexandre G. Oliveira; Tiago G. Araújo; Bruno M. Carvalho; Dioze Guadagnini; Guilherme Z. Rocha; Renata A. Bagarolli; José B.C. Carvalheira; Mario J.A. Saad

It has become clear that exercise may be a useful therapy in the insulin resistance treatment, as it has anti‐inflammatory effects and improves insulin sensitivity. However, it remains uncertain whether exercise affects the adipocytes or infiltrated macrophages. Thus, the aim was to investigate the effects of acute exercise on the inflammatory status and insulin signaling of the white adipose tissue (WAT) fractions (stromal‐vascular fraction [SVF] and adipocytes).


Obesity | 2013

Modulation of double-stranded RNA-activated protein kinase in insulin sensitive tissues of obese humans

Bruno M. Carvalho; Alexandre G. Oliveira; Mirian Ueno; Tiago G. Araújo; Dioze Guadagnini; Marco Antonio Carvalho-Filho; Bruno Geloneze; Marcelo Miranda de Oliveira Lima; José Carlos Pareja; José B.C. Carvalheira; Mario J.A. Saad

Objective: The double‐stranded RNA‐dependent protein kinase (PKR) was recently implicated in regulating molecular integration of nutrient‐ and pathogen‐sensing pathways in obese mice. However, its modulation in human tissues in situations of insulin resistance has not been investigated. The present study was performed to first determine the tissue expression and phosphorylation levels of PKR in the liver, muscle, and adipose tissue in obese humans, and also the modulation of this protein in the adipose tissue of obese patients after bariatric surgery.


Endocrinology | 2012

Topiramate Treatment Improves Hypothalamic Insulin and Leptin Signaling and Action and Reduces Obesity in Mice

Andrea M. Caricilli; Érica Penteado; Lélia L. de Abreu; Paula G.F. Quaresma; Andressa C. Santos; Dioze Guadagnini; Daniella Razolli; Francine Cappa Mittestainer; José B.C. Carvalheira; Lício A. Velloso; Mario J.A. Saad; Patrícia O. Prada

Topiramate (TPM) treatment has been shown to reduce adiposity in humans and rodents. The reduction in adiposity is related to decreased food intake and increased energy expenditure. However, the molecular mechanisms through which TPM induces weight loss are contradictory and remain to be clarified. Whether TPM treatment alters hypothalamic insulin, or leptin signaling and action, is not well established. Thus, we investigate herein whether short-term TPM treatment alters energy balance by affecting insulin and leptin signaling, action, or neuropeptide expression in the hypothalamus of mice fed with a high-fat diet. As expected, short-term treatment with TPM diminished adiposity in obese mice mainly due to reduced food intake. TPM increased anorexigenic signaling by enhancing the leptin-induced leptin receptor/Janus kinase 2/signal transducer and activator of transcription 3 pathway and the insulin-induced insulin receptor substrate/Akt/forkhead box O1 pathway in parallel to reduced phosphatase protein expression in the hypothalamus of obese mice. These effects were independent of body weight. TPM also raised anorexigenic neuropeptides such as POMC, TRH, and CRH mRNA levels in obese mice. In addition, TPM increased the activation of the hypothalamic MAPK/ERK pathway induced by leptin, accompanied by an increase in peroxisome proliferator-activated receptor-coactivator α and uncoupling protein 1 protein levels in brown adipose tissue. Furthermore, TPM increased AMP-activated protein kinase and acetyl-coenzyme A carboxylase phosphorylation in peripheral tissues, which may help improve energy metabolism in these tissues. Together, these results provide novel insights into the molecular mechanisms through which TPM treatment reduces adiposity.

Collaboration


Dive into the Dioze Guadagnini's collaboration.

Top Co-Authors

Avatar

Mario J.A. Saad

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrícia O. Prada

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Bruno M. Carvalho

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Andrey Santos

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Lício A. Velloso

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo R. Ropelle

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Andressa C. Santos

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Guilherme Z. Rocha

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge