Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dipankar Mondal is active.

Publication


Featured researches published by Dipankar Mondal.


Biomedical Optics Express | 2015

Controlling local temperature in water using femtosecond optical tweezer.

Dipankar Mondal; Debabrata Goswami

A novel method of directly observing the effect of temperature rise in water at the vicinity of optical trap center is presented. Our approach relies on changed values of corner frequency of the optical trap that, in turn, is realized from its power spectra. Our two color experiment is a unique combination of a non-heating femtosecond trapping laser at 780 nm, coupled to a femtosecond infrared heating laser at 1560 nm, which precisely controls temperature at focal volume of the trap center using low powers (100-800 µW) at high repetition rate. The geometric ray optics model quantitatively supports our experimental data.


Scientific Reports | 2016

Structure and dynamics of optically directed self-assembly of nanoparticles.

Debjit Roy; Dipankar Mondal; Debabrata Goswami

Self-assembly of nanoparticles leading to the formation of colloidal clusters often serves as the representative analogue for understanding molecular assembly. Unravelling the in situ structure and dynamics of such clusters in liquid suspensions is highly challenging. Presently colloidal clusters are first isolated from their generating environment and then their structures are probed by light scattering methods. In order to measure the in situ structure and dynamics of colloidal clusters, we have generated them using the high-repetition-rate femtosecond laser pulse optical tweezer. Since the constituent of our dimer, trimer or tetramer clusters are 250 nm radius two-photon resonant fluorophore coated nanospheres under the optical trap, they inherently produce Two-Photon Fluorescence, which undergo intra-nanosphere Fluorescence Energy Transfer. This unique energy transfer signature, in turn, enables us to visualize structures and orientations of these colloidal clusters during the process of their formation and subsequent dynamics in a liquid suspension. We also show that due to shape-birefringence, orientation and structural control of these colloidal clusters are possible as the polarization of the trapping laser is changed from linear to circular. We thus report important progress in sampling the smallest possible aggregates of nanoparticles, dimers, trimers or tetramers, formed early in the self-assembly process.


Journal of Nanophotonics | 2016

Sensitive in situ nanothermometer using femtosecond optical tweezers

Dipankar Mondal; Debabrata Goswami

Abstract. We report the rise in temperature in various liquid media adjacent to a trapped bead. A nonheating laser at 780 nm has been used to optically trap a 500-nm radius polystyrene bead, while a simultaneous irradiation with a copropagating 1560-nm high-repetition-rate femtosecond laser led to temperature rise in various trapping media. Vibrational combination band of the hydroxyl group in the trapping media resulted in high absorption of 1560-nm laser. This, in turn, gave us control over the trapping media temperature at the focus of the optical trap.


Proceedings of SPIE | 2015

Calibration of femtosecond optical tweezers as a sensitive thermometer

Dipankar Mondal; Debabrata Goswami

We present cumulative perturbation effects of femtosecond laser pulses on an optical tweezer. Our experiments involve a dual wavelength high repetition rate femtosecond laser, one at the non-heating wavelength of 780 nm while the other at 1560 nm to cause heating in the trapped volume under low power (100-800 μW) conditions. The 1560 nm high repetition rate laser acts as a resonant excitation source for the vibrational combination band of the hydroxyl group (OH) of water, which helps create the local heating effortlessly within the trapping volume. With such an experimental system, we are the first to observe direct effect of temperature on the corner frequency deduced from power spectrum. We can, thus, control and measure temperature precisely at the optical trap. This observation has lead us to calculate viscosity as well as temperature in the vicinity of the trapping zone. These experimental results also support the well-known fact that the nature of Brownian motion is the response of the optically trapped bead from the temperature change of surroundings. Temperature rise near the trapping zone can significantly change the viscosity of the medium. However, we notice that though the temperature and viscosity are changing as per our corner frequency calculations, the trap stiffness remains the same throughout our experiments within the temperature range of about 20 K.


2015 International Young Scientists Forum on Applied Physics (YSF) | 2015

Spatiotemporal control of energy transfer in optically trapped systems

Dipankar Mondal; Debjit Roy; Debabrata Goswami

We demonstrate control over two photon fluorescence (TPF) resonance energy transfer under femtosecond optically tweezed condition. We also extract information about the structure and dynamics of the trapped particles and their clusters as observed from the TPF decay times of the trapped multiple microspheres (0.50 μm size) by varying the polarization of the trapping laser. This micron to nano regime of the energy transfer process has provided us the necessary control over the molecular level energy transfer rate due to the different overlap integral of excitation and emission spectra of the dye that is coated on the surface of 1.0 μm polystyrene particles. Our background free detection method thus provides additional structural information about multiple trapping events.


Archive | 2018

Femtosecond Laser-Induced Photothermal Effect for Nanoscale Viscometer and Thermometer

Dipankar Mondal; Sumit Singhal; Debabrata Goswami

A new method of utilizing photothermal effect at nano-volume dimensions to measure viscosity is presented here that can, in turn, provide the surrounding temperature. Our measurements use high repetition rate, low average power, femtosecond laser pulses that induce photothermal effect that is highly influence by the convective mode of heat transfer. This is especially important for absorbing liquids, which is unlike the typical photothermal effects that are due to such ultrashort pulses. Typical thermal processes involve only conductive mode of heat transfer and are phenomenological in nature. Inclusion of convective mode results in additional molecular characteristics of the thermal process. We measure traditional thermal lens with femtosecond pulse train through geometric beam divergence of a collimated laser beam co-propagating with the focused heating laser beam. The refractive index gradient in the sample arising from a focused heating laser creates a thermal lens, which is measured. On the other hand, the same heat gradient from the focusing heating laser beam generates a change in local viscosity in the medium, which changes the trapped stiffness of an optically trapped microsphere in its vicinity. We use co-propagating femtosecond train of laser pulses at 1560 and 780 nm wavelengths for these experiments. We also show from the bulk thermal studies that use of water as sample has the advantage of using conductive mode of heat transfer for femtosecond pulse train excitation.


Proceedings of SPIE | 2017

In situ temperature control and measurement with femtosecond optical tweezers: offering biomedical application

Dipankar Mondal; Debabrata Goswami

We present here the control and measurement of temperature rise using femtosecond optical tweezers at near infrared (NIR) region. Based on our theoretical development, we have designed our experimental techniques. The high temporal sensitivity of position autocorrelation and equipartition theorem is simultaneously applied to elucidate temperature control and high precision measurement around focal volume. Experimentally we have made the benign NIR wavelength to induce local heating by adding very low fluorescent dye molecule with low average power. Local temperature control in aqueous solution exciting within optically absorbing window of the low quantum yield molecules can be possible due to non-radiative relaxation via thermal emission. The stochastic nature of Brownian particle has enough information of its surroundings. We have mapped the nano-dimension beam waist environment by probing the fluctuation of trapped particle. We have observed up to 30K temperature rise from room temperature at sub micro molar concentration. The gradient of temperature is as sharp as the fluence of pulsed laser focused by high numerical aperture objective. Thus, pulsed laser radiation always allows finer surgical techniques involving minimal thermal injuries. Our new techniques with multiphoton absorbing non-fluorescent dye can further be used to selective phototherapeutic diagnosis of cancer cells due to peak power dependent nonlinear phenomenon (NLO).


Proceedings of SPIE | 2016

Temperature control and measurement with tunable femtosecond optical tweezers

Dipankar Mondal; Debabrata Goswami

We present the effects of wavelength dependent temperature rise in a femtosecond optical tweezers. Our experiments involve the femtosecond trapping laser tunable from 740-820 nm at low power 25 mW to cause heating in the trapped volume within a homogeneous solution of sub micro-molar concentration of IR dye. The 780 nm high repetition rate laser acts as a resonant excitation source which helps to create the local heating effortlessly within the trapping volume. We have used both position autocorrelation and equipartion theorem to evaluate temperature at different wavelength having different absorption coefficient. Fixing the pulse width in the temporal domain gives constant bandwidth at spatial domain, which makes our system behave as a tunable temperature rise device with high precision. This observation leads us to calculate temperature as well as viscosity within the vicinity of the trapping zone. A mutual energy transfer occurs between the trapped bead and solvents that leads to transfer the thermal energy of solvents into the kinetic energy of the trap bead and vice-versa. Thus hot solvated molecules resulting from resonant and near resonant excitation of trapping wavelength can continuously dissipate heat to the trapped bead which will be reflected on frequency spectrum of Brownian noise exhibited by the bead. Temperature rise near the trapping zone can significantly change the viscosity of the medium. We observe temperature rise profile according to its Gaussian shaped absorption spectrum with different wavelength.


Methods and Applications in Fluorescence | 2016

Controlling and tracking of colloidal nanostructures through two-photon fluorescence

Dipankar Mondal; Debabrata Goswami

Multiphoton absorbing dye-coated trapped spherical bead at the focal plane of femtosecond optical tweezers shows nonlinear optical (NLO) phenomena. One such NLO process of two-photon fluorescence (TPF) has been used for the background-free imaging of a femtosecond laser-trapping event. Due to the high peak powers of femtosecond laser pulses with low average powers, it is possible to not only trap single nanospheres, but encourage optically directed self-assembly. The TPF signatures of trapped particles show evidence of such a directed self-assembly process which, in turn, can provide information about the structural dynamics during the process of cluster formation. We are able to trap and characterize structure and dynamics in 3D until pentamer formation from the decay characteristics of trapping at the focal plane.


Journal of Fluorescence | 2016

Two-Photon Fluorescence Tracking of Colloidal Clusters.

Debjit Roy; Dipankar Mondal; Debabrata Goswami

In situ dynamics of colloidal cluster formation from nanoparticles is yet to be addressed. Using two-photon fluorescence (TPF) that has been amply used for single particle tracking, we demonstrate in situ measurement of effective three-dimensional optical trap stiffness of nanoparticles and their aggregates without using any position sensitive detector. Optical trap stiffness is an essential measure of the strength of an optical trap. TPF is a zero-background detection scheme and has excellent signal-to-noise-ratio, which can be easily extended to study the formation of colloidal cluster of nanospheres in the optical trapping regime. TPF tracking can successfully distinguish colloidal cluster from its monomer.

Collaboration


Dive into the Dipankar Mondal's collaboration.

Top Co-Authors

Avatar

Debabrata Goswami

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Debjit Roy

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Paresh Mathur

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Soumendra Nath Bandyopadhyay

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Sumit Singhal

Indian Institute of Technology Kanpur

View shared research outputs
Researchain Logo
Decentralizing Knowledge