Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Benndorf is active.

Publication


Featured researches published by Dirk Benndorf.


The ISME Journal | 2007

Functional metaproteome analysis of protein extracts from contaminated soil and groundwater

Dirk Benndorf; Gerd U. Balcke; Hauke Harms; Martin von Bergen

Using proteins from soil or groundwater as functional biomarkers requires efficient extraction. We developed an extraction method in which the separation of proteins from the inorganic and organic constituents of the soil matrix was achieved by a combination of 0.1 M NaOH treatment and phenol extraction. Incubation with NaOH released humic acids and proteins from soil minerals, and simultaneously, disrupted microorganisms. The subsequent phenol extraction separated the proteins from the humic organic matter. Protein extracts were applied to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 2D-electrophoresis (2-DE). Spots and bands were excised and individual proteins identified by liquid chromatography online linked to mass spectrometry (MS) via electrospray ionization source (LC-ESI-MS). To assess the suitability of the method for the functional analysis of environmental metaproteomes, it was applied to soil that had been enriched in chlorophenoxy acid-degrading bacteria by incubation with 2,4-dichlorophenoxy acetic acid (2,4-D) for 22 days. The method was also used to analyze groundwater from the aquifer of a chlorobenzene-contaminated site. The identification of enzymes such as chlorocatechol dioxygenases was consistent with bacterial metabolic pathways expected to be expressed in these samples. The protocol enabled thus the analysis of the metaproteome of soil and groundwater samples. It thereby provides a means to study the diversity of environmental microbial communities while addressing functional aspects more directly than metagenome or even metatranscriptome analysis.


Applied and Environmental Microbiology | 2006

The Alkyl tert-Butyl Ether Intermediate 2-Hydroxyisobutyrate Is Degraded via a Novel Cobalamin-Dependent Mutase Pathway

Thore Rohwerder; Uta Breuer; Dirk Benndorf; Ute Lechner; Roland H. Müller

ABSTRACT Fuel oxygenates such as methyl and ethyl tert-butyl ether (MTBE and ETBE, respectively) are degraded only by a limited number of bacterial strains. The aerobic pathway is generally thought to run via tert-butyl alcohol (TBA) and 2-hydroxyisobutyrate (2-HIBA), whereas further steps are unclear. We have now demonstrated for the newly isolated β-proteobacterial strains L108 and L10, as well as for the closely related strain CIP I-2052, that 2-HIBA was degraded by a cobalamin-dependent enzymatic step. In these strains, growth on substrates containing the tert-butyl moiety, such as MTBE, TBA, and 2-HIBA, was strictly dependent on cobalt, which could be replaced by cobalamin. Tandem mass spectrometry identified a 2-HIBA-induced protein with high similarity to a peptide whose gene sequence was found in the finished genome of the MTBE-degrading strain Methylibium petroleiphilum PM1. Alignment analysis identified it as the small subunit of isobutyryl-coenzyme A (CoA) mutase (ICM; EC 5.4.99.13), which is a cobalamin-containing carbon skeleton-rearranging enzyme, originally described only in Streptomyces spp. Sequencing of the genes of both ICM subunits from strain L108 revealed nearly 100% identity with the corresponding peptide sequences from M. petroleiphilum PM1, suggesting a horizontal gene transfer event to have occurred between these strains. Enzyme activity was demonstrated in crude extracts of induced cells of strains L108 and L10, transforming 2-HIBA into 3-hydroxybutyrate in the presence of CoA and ATP. The physiological and evolutionary aspects of this novel pathway involved in MTBE and ETBE metabolism are discussed.


Systematic and Applied Microbiology | 2013

Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation

Angelika Hanreich; Ulrike Schimpf; Martha Zakrzewski; Andreas Schlüter; Dirk Benndorf; Robert Heyer; Erdmann Rapp; Alfred Pühler; Udo Reichl; Michael Klocke

Microbial communities in biogas batch fermentations, using straw and hay as co-substrates, were analyzed at the gene and protein level by metagenomic and metaproteomic approaches. The analysis of metagenomic data revealed that the Clostridiales and Bacteroidales orders were prevalent in the community. However, the number of sequences assigned to the Clostridiales order decreased during fermentation, whereas the number of sequences assigned to the Bacteroidales order increased. In addition, changes at the functional level were monitored and the metaproteomic analyses detected transporter proteins and flagellins, which were expressed mainly by members of the Bacteroidetes and Firmicutes phyla. A high number of sugar transporters, expressed by members of the Bacteroidetes, proved their potential to take up various glycans efficiently. Metagenome data also showed that methanogenic organisms represented less than 4% of the community, while 20-30% of the identified proteins were of archeal origin. These data suggested that methanogens were disproportionally active. In conclusion, the community studied was capable of digesting the recalcitrant co-substrate. Members of the Firmicutes phylum seemed to be the main degraders of cellulose, even though expression of only a few glycoside hydrolases was detected. The Bacteroidetes phylum expressed a high number of sugar transporters and seemed to specialize in the digestion of other polysaccharides. Finally, it was found that key enzymes of methanogenesis were expressed in high quantities, indicating the high metabolic activity of methanogens, although they only represented a minor group within the microbial community.


Allergy | 2008

Identification of spore allergens from the indoor mould Aspergillus versicolor

Dirk Benndorf; Andrea Müller; Katharina Bock; O. Manuwald; Olf Herbarth; M. von Bergen

Background:  Indoor mould growth and dampness are associated with respiratory health effects and allergies and several studies demonstrated that mainly Aspergillus versicolor and Penicillium expansum are responsible for indoor mould exposure. In contrast, commercialized test systems to diagnose allergic reactions to this mould species are not available. In this study, allergenic proteins from spores of the indoor relevant species A. versicolor and P. expansum should get detected and identified.


Applied and Environmental Microbiology | 2007

The Coprophilous Mushroom Coprinus radians Secretes a Haloperoxidase That Catalyzes Aromatic Peroxygenation

Dau Hung Anh; René Ullrich; Dirk Benndorf; Aleš Svatoš; Alexander Muck; Martin Hofrichter

ABSTRACT Coprophilous and litter-decomposing species (26 strains) of the genus Coprinus were screened for peroxidase activities by using selective agar plate tests and complex media based on soybean meal. Two species, Coprinus radians and C. verticillatus, were found to produce peroxidases, which oxidized aryl alcohols to the corresponding aldehydes at pH 7 (a reaction that is typical for heme-thiolate haloperoxidases). The peroxidase of Coprinus radians was purified to homogeneity and characterized. Three fractions of the enzyme, CrP I, CrP II, and CrP III, with molecular masses of 43 to 45 kDa as well as isoelectric points between 3.8 and 4.2, were identified after purification by anion-exchange and size exclusion chromatography. The optimum pH of the major fraction (CrP II) for the oxidation of aryl alcohols was around 7, and an H2O2 concentration of 0.7 mM was most suitable regarding enzyme activity and stability. The apparent Km values for ABTS [2,2′-azinobis(3-ethylbenzthiazolinesulfonic acid)], 2,6-dimethoxyphenol, benzyl alcohol, veratryl alcohol, and H2O2 were 49, 342, 635, 88, and 1,201 μM, respectively. The N terminus of CrP II showed 29% and 19% sequence identity to Agrocybe aegerita peroxidase (AaP) and chloroperoxidase, respectively. The UV-visible spectrum of CrP II was highly similar to that of resting-state cytochrome P450 enzymes, with the Soret band at 422 nm and additional maxima at 359, 542, and 571 nm. The reduced carbon monoxide complex showed an absorption maximum at 446 nm, which is characteristic of heme-thiolate proteins. CrP brominated phenol to 2- and 4-bromophenols and selectively hydroxylated naphthalene to 1-naphthol. Hence, after AaP, CrP is the second extracellular haloperoxidase-peroxygenase described so far. The ability to extracellularly hydroxylate aromatic compounds seems to be the key catalytic property of CrP and may be of general significance for the biotransformation of poorly available aromatic substances, such as lignin, humus, and organopollutants in soil litter and dung environments. Furthermore, aromatic peroxygenation is a promising target of biotechnological studies.


Biodegradation | 2009

Improving protein extraction and separation methods for investigating the metaproteome of anaerobic benzene communities within sediments

Dirk Benndorf; Carsten Vogt; Nico Jehmlich; Yvonne Schmidt; Henrik Thomas; Gary Woffendin; Andrej Shevchenko; Hans-Hermann Richnow; Martin von Bergen

BTEX compounds such as benzene are frequent soil and groundwater contaminants that are easily biodegraded under oxic conditions by bacteria. In contrast, benzene is rather recalcitrant under anaerobic conditions. The analysis of anoxic degradation is often hampered by difficult sampling conditions, limited amounts of biomass and interference of matrix compounds with proteomic approaches. In order to improve the procedure for protein extraction we established a scheme consisting of the following steps: dissociation of cells from lava granules, cell lysis by ultrasonication and purification of proteins by phenol extraction. The 2D-gels revealed a resolution of about 240 proteins spots and the spot patterns showed strong matrix dependence, but still differences were detectable between the metaproteomes obtained after growth on benzene and benzoate. Using direct data base search as well as de novo sequencing approaches we were able to identify several proteins. An enoyl-CoA hydratase with cross species homology to Azoarcus evansii, is known to be involved in the anoxic degradation of xenobiotics. Thereby the identification confirmed that this procedure has the capacity to analyse the metaproteome of an anoxic living microbial community.


Applied and Environmental Microbiology | 2007

Continuous Synthesis and Excretion of the Compatible Solute Ectoine by a Transgenic, Nonhalophilic Bacterium

Torsten Schubert; Thomas Maskow; Dirk Benndorf; Hauke Harms; Uta Breuer

ABSTRACT The compatible solute 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) acts in microorganisms as an osmotic counterweight against halostress and has attracted commercial attention as a protecting agent. Its production and application are restricted by the drawbacks of the discontinuous harvesting procedure involving salt shocks, which reduces volumetric yield, increases reactor corrosion, and complicates downstream processing. In order to synthesize ectoine continuously in less-aggressive media, we introduced the ectoine genes ectABC of the halophilic bacterium Chromohalobacter salexigens into an Escherichia coli strain using the expression vector pASK-IBA7. Under the control of a tet promoter, the transgenic E. coli synthesized 6 g liter−1 ectoine with a space-time yield of 40 mg liter−1 h−1, with the vast majority of the ectoine being excreted.


Journal of Proteome Research | 2015

The MetaProteomeAnalyzer: a powerful open-source software suite for metaproteomics data analysis and interpretation.

Thilo Muth; Alexander Behne; Robert Heyer; Fabian Kohrs; Dirk Benndorf; Marcus Hoffmann; Miro Lehteva; Udo Reichl; Lennart Martens; Erdmann Rapp

The enormous challenges of mass spectrometry-based metaproteomics are primarily related to the analysis and interpretation of the acquired data. This includes reliable identification of mass spectra and the meaningful integration of taxonomic and functional meta-information from samples containing hundreds of unknown species. To ease these difficulties, we developed a dedicated software suite, the MetaProteomeAnalyzer, an intuitive open-source tool for metaproteomics data analysis and interpretation, which includes multiple search engines and the feature to decrease data redundancy by grouping protein hits to so-called meta-proteins. We also designed a graph database back-end for the MetaProteomeAnalyzer to allow seamless analysis of results. The functionality of the MetaProteomeAnalyzer is demonstrated using a sample of a microbial community taken from a biogas plant.


Journal of Proteomics | 2010

Response of Pseudomonas putida KT2440 to phenol at the level of membrane proteome

Catarina Roma-Rodrigues; Pedro M. Santos; Dirk Benndorf; Erdmann Rapp; Isabel Sá-Correia

This study led to the extension and refinement of our current model for the global response of Pseudomonas putida KT2440 to phenol by getting insights into the adaptive response mechanisms involving the membrane proteome. A two-dimensional gel electrophoresis based protocol was optimized to allow the quantitative comparison of membrane proteins, by combining inner and outer membrane fractionation with membrane protein solubilization using the detergent dodecylmaltoside. Following phenol exposure, a coordinate increased content of protein subunits of known or putative solvent efflux pump systems (e.g. TtgA, TtgC, Ttg2A, Ttg2C, and PP_1516-7) and a decreased content of porins OprB, OprF, OprG and OprQ was registered, consistent with an adaptive response to reduce phenol intracellular concentration. This adaptive response may in part be mediated by post-translational modifications, as suggested by the relative content of the multiple forms identified for a few porins and efflux pump subunits. Results also suggest the important role of protein chaperones, of cell envelope and cell surface and of a more active respiratory chain in the response to phenol. All these mechanistic insights may be extended to Pseudomonas adaptation to solvents, of possible impact in biodegradation, bioremediation and biocatalysis.


Molecular BioSystems | 2013

Searching for a needle in a stack of needles: challenges in metaproteomics data analysis

Thilo Muth; Dirk Benndorf; Udo Reichl; Erdmann Rapp; Lennart Martens

In the past years the integral study of microbial communities of varying complexity has gained increasing research interest. Mass spectrometry-driven metaproteomics enables the analysis of such communities on the functional level, but this fledgling field still faces various technical and semantic challenges regarding experimental data analysis and interpretation. In the present review, we outline the hurdles involved and attempt to cover the most valuable methods and software implementations available to researchers in the field today. Beyond merely focusing on protein identification, we provide an overview on different data pre- and post-processing steps, such as metabolic pathway analysis, that can be useful in a typical metaproteomics workflow. Finally, we briefly discuss directions for future work.

Collaboration


Dive into the Dirk Benndorf's collaboration.

Top Co-Authors

Avatar

Udo Reichl

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Heyer

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Fabian Kohrs

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Kay Schallert

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine Kluge

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge