Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Brenner is active.

Publication


Featured researches published by Dirk Brenner.


Nature Reviews Immunology | 2015

Regulation of tumour necrosis factor signalling: live or let die

Dirk Brenner; Heiko Blaser; Tak W. Mak

Tumour necrosis factor (TNF) is a pro-inflammatory cytokine that has important roles in mammalian immunity and cellular homeostasis. Deregulation of TNF receptor (TNFR) signalling is associated with many inflammatory disorders, including various types of arthritis and inflammatory bowel disease, and targeting TNF has been an effective therapeutic strategy in these diseases. This Review focuses on the recent advances that have been made in understanding TNFR signalling and the consequences of its deregulation for cellular survival, apoptosis and regulated necrosis. We discuss how TNF-induced survival signals are distinguished from those that lead to cell death. Finally, we provide a brief overview of the role of TNF in inflammatory and autoimmune diseases, and we discuss up-to-date and future treatment strategies for these disorders.


Journal of Clinical Investigation | 2013

IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis

Magdalena Huber; Sylvia Heink; Axel Pagenstecher; Katharina Reinhard; Josephine Ritter; Alexander Visekruna; Anna Guralnik; Nadine Bollig; Katharina Jeltsch; Christina Heinemann; Eva Wittmann; Thorsten Buch; Olivia Prazeres da Costa; Anne Brüstle; Dirk Brenner; Tak W. Mak; Hans-Willi Mittrücker; Björn Tackenberg; Thomas Kamradt; Michael Lohoff

IL-17-producing CD8+ T (Tc17) cells are detectible in multiple sclerosis (MS) lesions; however, their contribution to the disease is unknown. To identify functions of Tc17 cells, we induced EAE, a murine model of MS, in mice lacking IFN regulatory factor 4 (IRF4). IRF4-deficient mice failed to generate Tc17 and Th17 cells and were resistant to EAE. After adoptive transfer of WT CD8+ T cells and subsequent immunization for EAE induction in these mice, the CD8+ T cells developed a Tc17 phenotype in the periphery but could not infiltrate the CNS. Similarly, transfer of small numbers of WT CD4+ T cells alone did not evoke EAE, but when transferred together with CD8+ T cells, IL-17-producing CD4+ (Th17) T cells accumulated in the CNS and mice developed severe disease. Th17 accumulation and development of EAE required IL-17A production by CD8+ T cells, suggesting that Tc17 cells are required to promote CD4+ T cell-mediated induction of EAE. Accordingly, patients with early-stage MS harbored a greater number of Tc17 cells in the cerebrospinal fluid than in peripheral blood. Our results reveal that Tc17 cells contribute to the initiation of CNS autoimmunity in mice and humans by supporting Th17 cell pathogenicity.


Trends in Cell Biology | 2016

TNF and ROS Crosstalk in Inflammation

Heiko Blaser; Catherine Dostert; Tak W. Mak; Dirk Brenner

Tumor necrosis factor (TNF) is tremendously important for mammalian immunity and cellular homeostasis. The role of TNF as a master regulator in balancing cell survival, apoptosis and necroptosis has been extensively studied in various cell types and tissues. Although these findings have revealed much about the direct impact of TNF on the regulation of NF-κB and JNK, there is now rising interest in understanding the emerging function of TNF as a regulator of the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review we summarize work aimed at defining the role of TNF in the control of ROS/RNS signaling that influences innate immune cells under both physiological and inflammatory conditions.


Immunity | 2017

Glutathione Primes T Cell Metabolism for Inflammation

Tak W. Mak; Melanie Grusdat; Gordon S. Duncan; Catherine Dostert; Yannic Nonnenmacher; Maureen A. Cox; Carole Binsfeld; Zhenyue Hao; Anne Brüstle; Momoe Itsumi; Christian Jäger; Ying Chen; Olaf Pinkenburg; Bärbel Camara; Markus Ollert; Carsten Bindslev-Jensen; Vasilis Vasiliou; Chiara Gorrini; Philipp A. Lang; Michael Lohoff; Isaac S. Harris; Karsten Hiller; Dirk Brenner

&NA; Activated T cells produce reactive oxygen species (ROS), which trigger the antioxidative glutathione (GSH) response necessary to buffer rising ROS and prevent cellular damage. We report that GSH is essential for T cell effector functions through its regulation of metabolic activity. Conditional gene targeting of the catalytic subunit of glutamate cysteine ligase (Gclc) blocked GSH production specifically in murine T cells. Gclc‐deficient T cells initially underwent normal activation but could not meet their increased energy and biosynthetic requirements. GSH deficiency compromised the activation of mammalian target of rapamycin‐1 (mTOR) and expression of NFAT and Myc transcription factors, abrogating the energy utilization and Myc‐dependent metabolic reprogramming that allows activated T cells to switch to glycolysis and glutaminolysis. In vivo, T‐cell‐specific ablation of murine Gclc prevented autoimmune disease but blocked antiviral defense. The antioxidative GSH pathway thus plays an unexpected role in metabolic integration and reprogramming during inflammatory T cell responses. Graphical Abstract Figure. No caption available. HighlightsGlutathione (GSH) is not needed for early T cell activation but promotes T cell growthGSH supports mTOR and NFAT activity and drives glycolysis and glutaminolysisGclc‐derived GSH buffers ROS and regulates Myc‐dependent metabolic reprogrammingAblation of Gclc in T cells impairs inflammatory responses in vivo &NA; Upon activation, T cells adapt their metabolism to meet their increased bioenergetic and biosynthetic needs. Activated T cells produce ROS, which trigger the antioxidative GSH response to prevent cellular damage. Mak et al. report that the GSH pathway plays an unexpected role in metabolic integration during inflammatory T cell responses.


Nature Communications | 2015

Antigen receptor-mediated depletion of FOXP3 in induced regulatory T-lymphocytes via PTPN2 and FOXO1.

Evita Bothur; Hartmann Raifer; Claudia Haftmann; Anna-Barbara Stittrich; Anne Brüstle; Dirk Brenner; Nadine Bollig; Maria Bieringer; Cholho Kang; Katharina Reinhard; Bärbel Camara; Magdalena Huber; Alexander Visekruna; Ulrich Steinhoff; Antje Repenning; Uta-Maria Bauer; Veronika Sexl; Andreas Radbruch; Tim Sparwasser; Mir-Farzin Mashreghi; Tak W. Mak; Michael Lohoff

Regulatory T-cells induced via IL-2 and TGFβ in vitro (iTreg) suppress immune cells and are potential therapeutics during autoimmunity. However, several reports described their re-differentiation into pathogenic cells in vivo and loss of their key functional transcription factor (TF) FOXP3 after T-cell antigen receptor (TCR)-signalling in vitro. Here, we show that TCR-activation antagonizes two necessary TFs for foxp3 gene transcription, which are themselves regulated by phosphorylation. Although the tyrosine phosphatase PTPN2 is induced to restrain IL-2-mediated phosphorylation of the TF STAT5, expression of the TF FOXO1 is downregulated and miR-182, a suppressor of FOXO1 expression, is upregulated. TGFβ counteracts the FOXP3-depleting TCR-signal by reassuring FOXO1 expression and by re-licensing STAT5 phosphorylation. Overexpressed phosphorylation-independent active versions of FOXO1 and STAT5 or knockdown of PTPN2 restores FOXP3 expression despite TCR-signal and absence of TGFβ. This study suggests novel targets for stabilisation and less dangerous application of iTreg during devastating inflammation.


Microbiology | 2011

Enterohaemorrhagic, but not enteropathogenic, Escherichia coli infection of epithelial cells disrupts signalling responses to tumour necrosis factor- alpha

Mélanie G. Gareau; Nathan K. Ho; Dirk Brenner; Andrew J. Sousa; Lionel LeBourhis; Tak W. Mak; Stephen E. Girardin; Dana J. Philpott; Philip M. Sherman

Enterohaemorrhagic Escherichia coli (EHEC), serotype O157u200a:u200aH7 is a non-invasive, pathogenic bacterium that employs a type III secretion system (T3SS) to inject effector proteins into infected cells. In this study, we demonstrate that EHEC blocks tumour necrosis factor-alpha (TNFα)-induced NF-κB signalling in infected epithelial cells. HEK293T and INT407 epithelial cells were challenged with EHEC prior to stimulation with TNFα. Using complementary techniques, stimulation with TNFα caused activation of NF-κB, as determined by luciferase reporter assay (increase in gene expression), Western blotting (phosphorylation of IκBα), immunofluorescence (p65 nuclear translocation) and immunoassay (CXCL-8 secretion), and each was blocked by EHEC O157u200a:u200aH7 infection. In contrast, subversion of host cell signalling was not observed following exposure to either enteropathogenic E. coli, strain E2348/69 (O127u200a:u200aH6) or the laboratory E. coli strain HB101. Heat-killed EHEC had no effect on NF-κB activation by TNFα. Inhibition was mediated, at least in part, by Shiga toxins and by the O157 plasmid, but not by the T3SS or flagellin, as demonstrated by using isogenic mutant strains. These findings indicate the potential for developing novel therapeutic targets to interrupt the infectious process.


Trends in Immunology | 2018

Reactive Oxygen Species: Involvement in T Cell Signaling and Metabolism

Davide G. Franchina; Catherine Dostert; Dirk Brenner

T cells are a central component of defenses against pathogens and tumors. Their effector functions are sustained by specific metabolic changes that occur upon activation, and these have been the focus of renewed interest. Energy production inevitably generates unwanted products, namely reactive oxygen species (ROS), which have long been known to trigger cell death. However, there is now evidence that ROS also act as intracellular signaling molecules both in steady-state and upon antigen recognition. The levels and localization of ROS contribute to the redox modeling of effector proteins and transcription factors, influencing the outcome of the T cell response. We discuss here how ROS can directly fine-tune metabolism and effector functions of T cells.


Cancer Letters | 2018

Survival of the fittest: Cancer challenges T cell metabolism

Davide G. Franchina; Feng He; Dirk Brenner

T cells represent the major contributors to antitumor-specific immunity among the tumor-infiltrating lymphocytes. However, tumors acquire ways to evade immunosurveillance and anti-tumor responses are too weak to eradicate the disease. T cells are often functionally impaired as a result of interaction with, or signals from, transformed cells and the tumor microenvironment, including stromal cells. Among these, nutrients use and consumption is critically important for the control of differentiation and effector mechanisms of T cells. Moreover, Treg cells-skewing conditions often coexist within the cancer milieu, which sustains the notion of immune privileged tumors. Additionally, cancer cells contend with tumor infiltrating lymphocytes for nutrients and can outcompete the immune response. PD1- and CTLA-based immunotherapies partially remodel cell metabolism leading the way to clinical approaches of metabolic reprogramming for therapeutic purposes. Here we shortly discuss T cell fates during anti-tumor immune responses and how signals within tumor microenvironment influence T cell metabolism, altering functions and longevity of the cell.


Journal of Virology | 2017

Tumor Necrosis Factor-Mediated Survival of CD169+ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection

Haifeng C. Xu; Sathish Kumar Maney; Andreas Kloetgen; Sukumar Namineni; Yuan Zhuang; Nadine Honke; Namir Shaabani; Nicolás Bellora; Mareike Doerrenberg; Mirko Trilling; Vitaly I. Pozdeev; Nico van Rooijen; Stefanie Scheu; Klaus Pfeffer; Paul R. Crocker; Masato Tanaka; Sujitha Duggimpudi; Percy A. Knolle; Mathias Heikenwalder; Jürgen Ruland; Tak W. Mak; Dirk Brenner; Aleksandra A. Pandyra; Jessica I. Hoell; Arndt Borkhardt; Dieter Häussinger; Karl S. Lang; Philipp A. Lang

ABSTRACT Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169+ cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169+ cells during viral infections remain unclear. Here, we show that tumor necrosis factor is produced by CD11b+ Ly6C+ Ly6G+ cells following infection with VSV. The absence of TNF or TNF receptor 1 (TNFR1) resulted in reduced numbers of CD169+ cells and in reduced type I interferon (IFN-I) production during VSV infection, with a severe disease outcome. Specifically, TNF triggered RelA translocation into the nuclei of CD169+ cells; this translocation was inhibited when the paracaspase MALT-1 was absent. Consequently, MALT1 deficiency resulted in reduced VSV replication, defective innate immune activation, and development of severe disease. These findings indicate that TNF mediates the maintenance of CD169+ cells and innate and adaptive immune activation during VSV infection. IMPORTANCE Over the last decade, strategically placed CD169+ metallophilic macrophages in the marginal zone of the murine spleen and lymph nodes (LN) have been shown to play a very important role in host defense against viral pathogens. CD169+ macrophages have been shown to activate innate and adaptive immunity via “enforced virus replication,” a controlled amplification of virus particles. However, the factors regulating the CD169+ macrophages remain to be studied. In this paper, we show that after vesicular stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF), which signals via TNFR1, and promote enforced virus replication in CD169+ macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance.


Trends in cancer | 2018

B-Cell Metabolic Remodeling and Cancer

Davide G. Franchina; Melanie Grusdat; Dirk Brenner

Cells of the immune system display varying metabolic profiles to fulfill their functions. B lymphocytes overcome fluctuating energy challenges as they transition from the resting state and recirculation to activation, rapid proliferation, and massive antibody production. Only through a controlled interplay between metabolism, extracellular stimuli, and intracellular signaling can successful humoral responses be mounted. Alterations to this balance can promote malignant transformation of B cells. The metabolic control of B-cell fate is only partially understood. Here, we provide a compelling overview of the current state of the art and describe the main metabolic features of B cells during normal development and oncogenesis, with emphasis on the major B-cell transcriptional and metabolic regulators, including myelocytomatosis virus oncogene cellular homolog (Myc) and hypoxia-inducible factor 1-α (HIF-1α).

Collaboration


Dive into the Dirk Brenner's collaboration.

Top Co-Authors

Avatar

Tak W. Mak

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Anne Brüstle

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Melanie Grusdat

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philipp A. Lang

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge