Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Dietrich is active.

Publication


Featured researches published by Dirk Dietrich.


Nature Neuroscience | 2007

Vesicular glutamate release from axons in white matter

Maria Kukley; Estibaliz Capetillo-Zarate; Dirk Dietrich

Vesicular release of neurotransmitter is the universal output signal of neurons in the brain. It is generally believed that fast transmitter release is restricted to nerve terminals that contact postsynaptic cells in the gray matter. Here we show in the rat brain that the neurotransmitter glutamate is also released at discrete sites along axons in white matter in the absence of neurons and nerve terminals. The propagation of single action potentials along axons leads to rapid vesicular release of glutamate, which is detected by ionotropic glutamate receptors on local oligodendrocyte precursor cells. Axonal release of glutamate is reliable, involves highly localized calcium microdomain signaling and is strongly calcium cooperative, similar to vesicle fusion at synapses. This axonal transmitter release represents a widespread mechanism for high-fidelity, activity-dependent signaling at the axon-glia interface in white matter.


Development | 2011

Age-dependent fate and lineage restriction of single NG2 cells.

Xiaoqin Zhu; Robert A. Hill; Dirk Dietrich; Mila Komitova; Ryusuke Suzuki; Akiko Nishiyama

NG2-expressing glia (NG2 cells, polydendrocytes) appear in the embryonic brain, expand perinatally, and persist widely throughout the gray and white matter of the mature central nervous system. We have previously reported that NG2 cells generate oligodendrocytes in both gray and white matter and a subset of protoplasmic astrocytes in the gray matter of the ventral forebrain and spinal cord. To investigate the temporal changes in NG2 cell fate, we generated NG2creER™BAC transgenic mice, in which tamoxifen-inducible Cre is expressed in NG2 cells. Cre induction at embryonic day 16.5, postnatal day (P) 2, P30 and P60 in mice that were double transgenic for NG2creER™BAC and the Cre reporter revealed that NG2 cells in the postnatal brain generate only NG2 cells or oligodendrocytes, whereas NG2 cells in the embryonic brain generate protoplasmic astrocytes in the gray matter of the ventral forebrain in addition to oligodendrocytes and NG2 cells. Analysis of cell clusters from single NG2 cells revealed that more than 80% of the NG2 cells in the P2 brain give rise to clusters consisting exclusively of oligodendrocytes, whereas the majority of the NG2 cells in the P60 brain generate clusters that contain only NG2 cells or a mixture of oligodendrocytes and NG2 cells. Furthermore, live cell imaging of single NG2 cells from early postnatal brain slices revealed that NG2 cells initially divide symmetrically to produce two daughter NG2 cells and that differentiation into oligodendrocytes occurred after 2-3 days.


Annals of Neurology | 2003

A novel mechanism underlying drug resistance in chronic epilepsy.

Stefan Remy; Siegrun Gabriel; Bernd W. Urban; Dirk Dietrich; Thomas N. Lehmann; Christian E. Elger; Uwe Heinemann; Heinz Beck

The development of resistance to pharmacological treatment is common to many human diseases. In chronic epilepsy, many patients develop resistance to anticonvulsant drug treatment during the course of their disease, with the underlying mechanisms remaining unclear. We have studied cellular mechanisms underlying drug resistance in resected hippocampal tissue from patients with temporal lobe epilepsy by comparing two groups of patients, the first displaying a clinical response to the anticonvulsant carbamazepine and a second group with therapy‐resistant seizures. Using patch‐clamp recordings, we show that the mechanism of action of carbamazepine, use‐dependent block of voltage‐dependent Na+ channels, is completely lost in carbamazepine‐resistant patients. Likewise, seizure activity elicited in human hippocampal slices is insensitive to carbamazepine. In marked contrast, carbamazepine‐induced use‐dependent block of Na+ channels and blocked seizure activity in vitro in patients clinically responsive to this drug. Consistent with these results in human patients, we also show that use‐dependent block of Na+ channels by carbamazepine is absent in chronic experimental epilepsy. Taken together, these data suggest that a loss of Na+ channel drug sensitivity may constitute a novel mechanism underlying the development of drug‐resistant epilepsy. Ann Neurol 2003


Neuron | 2003

Functional Specialization of Presynaptic Cav2.3 Ca2+ Channels

Dirk Dietrich; Timo Kirschstein; Maria Kukley; Alexej Pereverzev; Christian von der Brelie; Toni Schneider; Heinz Beck

Ca2+ influx into presynaptic terminals via voltage-dependent Ca2+ channels triggers fast neurotransmitter release as well as different forms of synaptic plasticity. Using electrophysiological and genetic techniques we demonstrate that presynaptic Ca2+ entry through Cav2.3 subunits contributes to the induction of mossy fiber LTP and posttetanic potentiation by brief trains of presynaptic action potentials while they do not play a role in fast synaptic transmission, paired-pulse facilitation, or frequency facilitation. This functional specialization is most likely achieved by a localization remote from the release machinery and by a Cav2.3 channel-dependent facilitation of presynaptic Ca2+ influx. Thus, the presence of Cav2.3 channels boosts the accumulation of presynaptic Ca2+ triggering presynaptic LTP and posttetanic potentiation without affecting the low release probability that is a prerequisite for the enormous plasticity displayed by mossy fiber synapses.


The Journal of Neuroscience | 2010

The Fate of Synaptic Input to NG2 Glial Cells: Neurons Specifically Downregulate Transmitter Release onto Differentiating Oligodendroglial Cells

Maria Kukley; Akiko Nishiyama; Dirk Dietrich

NG2-expressing oligodendrocyte precursor cells (OPCs) are ubiquitous and generate oligodendrocytes throughout the young and adult brain. Previous work has shown that virtually every NG2 cell receives synaptic input from many axons, but the meaning of this signaling is not understood. In particular, it is unclear whether neurons specifically synapse onto OPCs or whether OPCs merely trace adjacent neurotransmitter release sites and are not recognized by the presynaptic neuron. Here, we show with whole-cell recordings from distinct developmental stages of oligodendroglial cells in brain slices that synaptic input essentially disappears as soon as OPCs differentiate into premyelinating oligodendrocytes (NG2−, DM20/PLP+, O1+). Uncaging experiments and tracer loading revealed that premyelinating oligodendrocytes still express a substantial number of AMPA/kainate receptors and many processes, but spontaneous and stimulated synaptic currents are mostly absent. Nevertheless, in a minority of premyelinating cells, electrical stimulation evoked small synaptic currents with an unusual behavior: their amplitude compared well with the quantal amplitude in OPCs but they occurred asynchronously and with the remarkable latency of 40–100 ms, indicating that the presynaptic release machinery has become ineffective. Mature myelinating oligodendrocytes completely lack AMPA/kainate receptors and respond to uncaging and synaptic stimulation with glutamate transporter currents. Our data show that neurons selectively synapse onto only one of several coexisting developmental stages of glial cells and thereby indicate that neurons indeed specifically signal to OPCs and are able to modulate transmitter output by regulating the local release machinery in a manner specific to the developmental stage of the postsynaptic glial cell.


The FASEB Journal | 2008

Glial cells are born with synapses

Maria Kukley; Maia Kiladze; Reshmi Tognatta; Michael Hans; Dieter Swandulla; Johannes Schramm; Dirk Dietrich

In postnatal rodent brain, certain NG2‐expressing oligodendroglial precursor cells (OPCs) are contacted by synaptic terminals from local neurons. However, it has remained elusive whether and when NG2+ cells are integrated into neuronal circuits. Here we use patch‐clamp recordings from mitotic cells in murine brain slices to show that, unlike any other cell in the central nervous system (CNS), cortical NG2+ cells divide and relocate while being linked to synaptic junctions. Together with bromodeoxyuridine (BrdU) labeling, our recordings imply that cellular processes that bear synaptic junctions are surprisingly kept during cytokinesis and are inherited by the daughter cells. Cell cycle time (78 h) and relocation speed (5 μm/day) are slowed, and NG2+ cells largely divide symmetrically. Inheritance of synapses enables newborn glial cells to establish synaptic connections much faster than newborn neurons and ensures that the entire population of NG2+ cells is exposed to synaptic signals from local axons. The results suggest that synapses do not only transmit neuronal activity but also act as environmental cues for the development of glial cells. Inheritance of synapses allows for the direct transfer of environmental interactions to clonal descendants of OPCs, which might be important for effective colonization and myelination of the developing brain.—Kukley, M., Kiladze, M., Tognatta, R., Hans, M., Swandulla, D., Schramm, J., Dietrich, D. Glial cells are born with synapses. FASEB J. 22, 2957–2969 (2008)


The Journal of Neuroscience | 2005

Endogenous Ca2+ Buffer Concentration and Ca2+ Microdomains in Hippocampal Neurons

Andreas Müller; Maria Kukley; Pia Stausberg; Heinz Beck; Wolfgang Müller; Dirk Dietrich

Ca2+-binding proteins are ubiquitously expressed throughout the CNS and serve as valuable immunohistochemical markers for certain types of neurons. However, the functional role of most Ca2+-binding proteins has to date remained obscure because their concentration in central neurons is not known. In this study, we investigate the intracellular concentration of the widely expressed Ca2+-binding protein calbindin-D28k in adult hippocampal slices using patch-clamp recordings and immunohistochemistry. First, we show that calbindin-D28k freely exchanges between patch pipette and cytoplasm during whole cell patch-clamp recordings with a time constant of ∼10 min. Substituting known concentrations of recombinant calbindin-D28k in patch pipettes enabled us to determine the endogenous calbindin-D28k concentration by postrecording immunohistochemistry. Using this calibration procedure, we find that mature granule cells (doublecortin-) contain ∼40 μm, and newborn granule cells (doublecortin+) contain 0-20 μm calbindin-D28k. CA3 stratum radiatum interneurons and CA1 pyramidal cells enclose ∼47 and ∼45 μm calbindin-D28k, respectively. Numerical simulations showed that 40 μm calbindin-D28k is capable of tuning Ca2+ microdomains associated with action potentials at the mouth of single or clustered Ca2+ channels: calbindin-D28k reduces the increment in free Ca2+ at a distance of 100 and 200 nm by 20 and 35%, respectively, and strongly accelerates the collapse of the Ca2+ gradient after cessation of Ca2+ influx. These data suggest that calbindin-D28k equips hippocampal neurons with ∼160 μm mobile, high-affinity Ca2+-binding sites (κS ∼200) that slow and reduce global Ca2+ signals while they enhance the spatiotemporal fidelity of submicroscopic Ca2+ signals.


The Journal of Neuroscience | 2004

Ecto-Nucleotidases and Nucleoside Transporters Mediate Activation of Adenosine Receptors on Hippocampal Mossy Fibers by P2X7 Receptor Agonist 2′-3′-O-(4-Benzoylbenzoyl)-ATP

Maria Kukley; Pia Stausberg; Giselind Adelmann; Iain P. Chessell; Dirk Dietrich

The ionotropic and cytolytic P2X7 receptor is typically found on immune cells, where it is involved in the release of cytokines. Recently, P2X7 receptors were reported to be localized to presynaptic nerve terminals and to modulate transmitter release. In the present study, we reassessed this unexpected role of P2X7 receptors at hippocampal mossy fiber-CA3 synapses. In agreement with previous findings, the widely used P2X7 agonist 2′-3′-O-(4-benzoylbenzoyl)-adenosine-5′-triphosphate (BzATP) clearly depressed field potentials (fEPSPs); however, no evidence for an involvement of P2X7 receptors could be obtained. First, depression of fEPSPs by BzATP was unchanged in P2X7-/- mice. Second, experiments using P2X7-/- mice, immunohistochemistry, and electron microscopy showed that the antigen detected by frequently used P2X7 antibodies is not compatible with a plasmalemmal P2X7 receptor. Third, BzATP did not alter Ca2+ levels in synaptic terminals. In contrast, the depression of fEPSPs by BzATP was fully blocked by adenosine (A1) receptor antagonists. Furthermore, the application of BzATP also activated postsynaptic A1 receptor-coupled K+ channels. This effect of BzATP was mimicked by ATP and adenosine and was completely prevented by enzymes specifically degrading adenosine. Activation of A1-coupled K+ channels by BzATP was dependent on ecto-nucleotidases, extracellular enzymes that convert ATP to adenosine. Moreover, the opening of A1-coupled K+ channels by BzATP was dependent on nucleoside transporters. Taken together, our results indicate that BzATP is extracellularly catabolized to Bz-adenosine and subsequently hetero-exchanged for intracellular adenosine and then depresses mossy fiber fEPSPs through presynaptic A1 receptors rather than through P2X7 receptors. Thus, the present study casts doubts on the neuronal localization of P2X7 receptors in rodent hippocampus.


The Journal of Physiology | 2008

Synapses on NG2-expressing progenitors in the brain: multiple functions?

Vittorio Gallo; Jean-Marie Mangin; Maria Kukley; Dirk Dietrich

Progenitor cells expressing the proteoglycan NG2 represent approximately 5% of the total cells in the adult brain, and are found both in grey and white matter regions where they give rise to oligodendrocytes. The finding that these cells receive synaptic contacts from excitatory and inhibitory neurons has not only raised major interest in the possible roles of these synapses, but also stimulated further research on the developmental and cellular functions of NG2‐expressing (NG2+) progenitors themselves in the context of neural circuit physiology. Here we review recent findings on the functional properties of the synapses on NG2+ cells in grey and white matter regions of the brain. In this review article we make an attempt to integrate current knowledge on the cellular and developmental properties of NG2+ progenitors with the functional attributes of their synapses, in order to understand the physiological relevance of neuron–NG2+ progenitor signal transmission. We propose that, although NG2+ progenitors receive synaptic contact in all brain regions where they are found, their synapses might have different developmental and functional roles, probably reflecting the distinct functions of NG2+ progenitors in the brain.


The Journal of Neuroscience | 2007

Nanodomains of Single Ca2+ Channels Contribute to Action Potential Repolarization in Cortical Neurons

Andreas Müller; Maria Kukley; Mischa Uebachs; Heinz Beck; Dirk Dietrich

The precise shape of action potentials in cortical neurons is a key determinant of action potential-dependent Ca2+ influx, as well as of neuronal signaling, on a millisecond scale. In cortical neurons, Ca2+-sensitive K+ channels, or BK channels (BKChs), are crucial for action potential termination, but the precise functional interplay between Ca2+ channels and BKChs has remained unclear. In this study, we investigate the mechanisms allowing for rapid and reliable activation of BKChs by single action potentials in hippocampal granule cells and the impact of endogenous Ca2+ buffers. We find that BKChs are operated by nanodomains of single Ca2+ channels. Using a novel approach based on a linear approximation of buffered Ca2+ diffusion in microdomains, we quantitatively analyze the prolongation of action potentials by the Ca2+ chelator BAPTA. This analysis allowed us to estimate that the mean diffusional distance for Ca2+ ions from a Ca2+ channel to a BKCh is ∼13 nm. This surprisingly short diffusional distance cannot be explained by a random distribution of Ca2+ channels and renders the activation of BKChs insensitive to the relatively high concentrations of endogenous Ca2+ buffers in hippocampal neurons. These data suggest that tight colocalization of the two types of channels permits hippocampal neurons to regulate global Ca2+ signals by a high cytoplasmic Ca2+ buffer capacity without affecting the fast and brief activation of BKChs required for proper repolarization of action potentials.

Collaboration


Dive into the Dirk Dietrich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiko Nishiyama

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge