Dirk E. Martens
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dirk E. Martens.
Bioresource Technology | 2012
Guido Breuer; Packo P. Lamers; Dirk E. Martens; René B. Draaisma; René H. Wijffels
Microalgae-derived lipids are an alternative to vegetable and fossil oils, but lipid content and quality vary among microalgae strains. Selection of a suitable strain for lipid production is therefore of paramount importance. Based on published results for 96 species, nine strains were selected to study their biomass, total fatty acid, and triacylglycerol (TAG) production under nitrogen-sufficient and deficient cultivation conditions. Under nitrogen-deficient conditions, Chlorella vulgaris, Chlorella zofingiensis, Neochloris oleoabundans, and Scenedesmus obliquus, accumulated more than 35% of their dry weight as TAGs. Palmitic and oleic acid were the major fatty acids produced. The main difference between these strains was the amount of biomass that was produced (3.0-7.8-fold increase in dry weight) and the duration that the biomass productivity was retained (2-7 days) after nitrogen depletion. S. obliquus (UTEX 393) and C. zofingiensis (UTEX B32) showed the highest average TAG productivity (322 and 243 mg l(-1)day(-1)).
Critical Reviews in Biotechnology | 2003
Jos Malda; Dirk E. Martens; J. Tramper; Clemens van Blitterswijk; J. Riesle
Articular cartilage lacks the ability to repair itself and consequently defects in this tissue do not heal. Tissue engineering approaches, employing a scaffold material and cartilage producing cells (chondrocytes), hold promise for the treatment of such defects. In these strategies the limitation of nutrients, such as oxygen, during in vitro culture are of major concern and will have implications for proper bioreactor design. We recently demonstrated that oxygen gradients are indeed present within tissue engineered cartilaginous constructs. Interestingly, oxygen, besides being an essential nutrient, is also a controlling agent of developmental processes including cartilage formation. However, the specific role of oxygen in these processes is still obscure despite the recent advances in the field. In particular, the outcome of published investigations is inconsistent regarding the effect of oxygen tension on chondrocytes. Therefore, this article describes the possible roles of oxygen gradients during embryonic cartilage development and reviews the data reported on the effect of oxygen tension on in vitro chondrocyte proliferation and differentiation from a tissue engineering perspective. Furthermore, possible causes for the variance in the data are discussed. Finally, recommendations are included that may reduce the variation, resulting in more reliable and comparable data.
Bioresource Technology | 2013
Guido Breuer; Packo P. Lamers; Dirk E. Martens; René B. Draaisma; René H. Wijffels
Microalgae-derived lipids in the form of triacylglycerols (TAGs) are considered an alternative resource for the production of biofuels and food commodities. Large scale production of microalgal TAGs is currently uneconomical. The cost price could be reduced by improving the areal and volumetric TAG productivity. The economic value could be increased by enhancing the TAG quality. To improve these characteristics, the impact of light intensity, and the combined impact of pH and temperature on TAG accumulation were studied for Scenedesmus obliquus UTEX 393 under nitrogen starved conditions. The maximum TAG content was independent of light intensity, but varied between 18% and 40% of dry weight for different combinations of pH and temperature. The highest yield of fatty acids on light (0.263 g/mol photon) was achieved at the lowest light intensity, pH 7 and 27.5 °C.
Bioresource Technology | 2013
Anne J. Klok; Dirk E. Martens; René H. Wijffels; Packo P. Lamers
In this paper the hypothesis was tested whether TAG accumulation serves as an energy sink when microalgae are exposed to an energy imbalance caused by nutrient limitation. In our continuous culture system, excess light absorption and growth-limiting nitrogen supply rates were combined, which resulted in accumulation of TAG (from 1.5% to 12.4% w/w) in visible lipid bodies in Neochloris oleoabundans, while cell replication was sustained. A fourfold increase in TAG productivity showed that TAG indeed served as an energy sink. However, the bulk of excess energy was dissipated leading to a significantly reduced biomass productivity and yield of biomass on light. This demonstrates that when aiming at industrial TAG production, sustaining efficient light energy use under nutrient stress is an important trait to look for in potential production organisms.
Tissue Engineering | 2003
Jos Malda; C.A. van Blitterswijk; M. Grojec; Dirk E. Martens; J. Tramper; J. Riesle
Functional cartilage implants for orthopedic surgery or in vitro tissue evaluation can be created from expanded chondrocytes and biodegradable scaffolds. Expansion of chondrocytes in two-dimensional culture systems results in their dedifferentiation. The hallmark of this process is the switch of collagen synthesis from type II to type I. The aim of this study was to evaluate the postexpansion chondrogenic potential of microcarrier-expanded bovine articular chondrocytes in pellet cultures. A selection of microcarriers was screened for initial attachment of chondrocytes. On the basis of those results and additional selection criteria related to clinical application, Cytodex-1 microcarriers were selected for further investigation. Comparable doubling times were obtained in T-flask and microcarrier cultures. During propagation on Cytodex-1 microcarriers, cells acquired a spherical-like morphology and the presence of collagen type II was detected. Both observations are indicative of a differentiated chondrocyte. Pellet cultures of microcarrier-expanded cells showed cartilage-like morphology and staining for proteoglycans and collagen type II after 14 days. In contrast, pellets of T-flask-expanded cells had a fibrous appearance and showed abundant staining only for collagen type I. Therefore, culture of chondrocytes on microcarriers may offer useful and cost-effective cell expansion opportunities in the field of cartilage tissue engineering.
Journal of Virology | 2002
Gorben P. Pijlman; J. C. F. M. Dortmans; Angela M.G. Vermeesch; Kai Yang; Dirk E. Martens; Rob Goldbach; Just M. Vlak
ABSTRACT The generation of deletion mutants, including defective interfering viruses, upon serial passage of Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) in insect cell culture has been studied. Sequences containing the non-homologous region origin of DNA replication (non-hr ori) became hypermolar in intracellular viral DNA within 10 passages in Se301 insect cells, concurrent with a dramatic drop in budded virus and polyhedron production. These predominant non-hr ori-containing sequences accumulated in larger concatenated forms and were generated de novo as demonstrated by their appearance and accumulation upon infection with a genetically homogenous bacterial clone of SeMNPV (bacmid). Sequences were identified at the junctions of the non-hr ori units within the concatemers, which may be potentially involved in recombination events. Deletion of the SeMNPV non-hr ori using RecE/RecT-mediated homologous ET recombination in Escherichia coli resulted in a recombinant bacmid with strongly enhanced stability of virus and polyhedron production upon serial passage in insect cells. This suggests that the accumulation of non-hr oris upon passage is due to the replication advantage of these sequences. The non-hr ori deletion mutant SeMNPV bacmid can be exploited as a stable eukaryotic heterologous protein expression vector in insect cells.
Biotechnology Progress | 2010
Anna M. J. Kliphuis; Lenneke de Winter; Carsten Vejrazka; Dirk E. Martens; Marcel Janssen; René H. Wijffels
To be able to study the effect of mixing as well as any other parameter on productivity of algal cultures, we designed a lab‐scale photobioreactor in which a short light path (SLP) of (12 mm) is combined with controlled mixing and aeration. Mixing is provided by rotating an inner tube in the cylindrical cultivation vessel creating Taylor vortex flow and as such mixing can be uncoupled from aeration. Gas exchange is monitored on‐line to gain insight in growth and productivity. The maximal productivity, hence photosynthetic efficiency, of Chlorella sorokiniana cultures at high light intensities (1,500 μmol m−1 s−1) was investigated in this Taylor vortex flow SLP photobioreactor. We performed duplicate batch experiments at three different mixing rates: 70, 110, and 140 rpm, all in the turbulent Taylor vortex flow regime. For the mixing rate of 140 rpm, we calculated a quantum requirement for oxygen evolution of 21.2 mol PAR photons per mol O2 and a yield of biomass on light energy of 0.8 g biomass per mol PAR photons. The maximal photosynthetic efficiency was found at relatively low biomass densities (2.3 g L−1) at which light was just attenuated before reaching the rear of the culture. When increasing the mixing rate twofold, we only found a small increase in productivity. On the basis of these results, we conclude that the maximal productivity and photosynthetic efficiency for C. sorokiniana can be found at that biomass concentration where no significant dark zone can develop and that the influence of mixing‐induced light/dark fluctuations is marginal.
Trends in Biotechnology | 2014
Anne J. Klok; Packo P. Lamers; Dirk E. Martens; R.B. Draaisma; René H. Wijffels
Microalgae are a promising future source for sustainable edible oils. To make microalgal oil a cost-effective alternative for common vegetable oils, increasing TAG productivity and TAG content are of high importance. Fulfilling these targets requires proper understanding of lipid metabolism in microalgae. Here, we provide an overview of our current knowledge on the biology of TAG accumulation as well as the latest developments and future directions for increasing oil production in microalgae, considering both metabolic engineering techniques and cultivation strategies.
Vaccine | 2010
Bas van de Waterbeemd; Mathieu Streefland; Peter van der Ley; Bert Zomer; Harry van Dijken; Dirk E. Martens; René H. Wijffels; Leo A. van der Pol
The use of detergent-extracted outer membrane vesicles (OMVs) is an established approach for development of a multivalent PorA vaccine against N. meningitidis serogroup B. Selective removal of lipopolysaccharide (LPS) decreases toxicity, but promotes aggregation and narrows the immune response. Detergent-free OMV vaccines retain all LPS, which preserves the native vesicle structure, but result in high toxicity and lower yield. The present study assessed the effects of gene mutations that attenuated LPS toxicity (lpxL1) or improved OMV yield (rmpM) in combination with the available OMV purification processes. The results substantiate that OMVs from a strain with both mutations, produced with a detergent-free process provide better vaccine characteristics than the traditional detergent-based approach. With comparable toxicity and yield, no aggregation and cross-protection against other PorA subtypes, these OMV vaccines are potentially safe and effective for parenteral use in humans.
Journal of Phycology | 2014
Kim J. M. Mulders; Packo P. Lamers; Dirk E. Martens; René H. Wijffels
There is increasing interest in naturally produced colorants, and microalgae represent a bio‐technologically interesting source due to their wide range of colored pigments, including chlorophylls (green), carotenoids (red, orange and yellow), and phycobiliproteins (red and blue). However, the concentration of these pigments, under optimal growth conditions, is often too low to make microalgal‐based pigment production economically feasible. In some Chlorophyta (green algae), specific process conditions such as oversaturating light intensities or a high salt concentration induce the overproduction of secondary carotenoids (β‐carotene in Dunaliella salina (Dunal) Teodoresco and astaxanthin in Haematococcus pluvialis (Flotow)). Overproduction of all other pigments (including lutein, fucoxanthin, and phycocyanin) requires modification in gene expression or enzyme activity, most likely combined with the creation of storage space outside of the photosystems. The success of such modification strategies depends on an adequate understanding of the metabolic pathways and the functional roles of all the pigments involved. In this review, the distribution of commercially interesting pigments across the most common microalgal groups, the roles of these pigments in vivo and their biosynthesis routes are reviewed, and constraints and opportunities for overproduction of both primary and secondary pigments are presented.