Dirk E. Smith
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dirk E. Smith.
Nature | 2001
Katherine A. Fitzgerald; Eva M. Palsson-McDermott; Andrew G. Bowie; Caroline A. Jefferies; Ashley Mansell; Gerard Brady; Elizabeth Brint; Aisling Dunne; Pearl Gray; Mary T. Harte; Diane McMurray; Dirk E. Smith; John E. Sims; Timothy A. Bird; Luke A. J. O'Neill
The recognition of microbial pathogens by the innate immune system involves Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns. Different TLRs recognize different pathogen-associated molecular patterns, with TLR-4 mediating the response to lipopolysaccharide from Gram-negative bacteria. All TLRs have a Toll/IL-1 receptor (TIR) domain, which is responsible for signal transduction. MyD88 is one such protein that contains a TIR domain. It acts as an adapter, being involved in TLR-2, TLR-4 and TLR-9 signalling; however, our understanding of how TLR-4 signals is incomplete. Here we describe a protein, Mal (MyD88-adapter-like), which joins MyD88 as a cytoplasmic TIR-domain-containing protein in the human genome. Mal activates NF-κB, Jun amino-terminal kinase and extracellular signal-regulated kinase-1 and -2. Mal can form homodimers and can also form heterodimers with MyD88. Activation of NF-κB by Mal requires IRAK-2, but not IRAK, whereas MyD88 requires both IRAKs. Mal associates with IRAK-2 by means of its TIR domain. A dominant negative form of Mal inhibits NF-κB, which is activated by TLR-4 or lipopolysaccharide, but it does not inhibit NF-κB activation by IL-1RI or IL-18R. Mal associates with TLR-4. Mal is therefore an adapter in TLR-4 signal transduction.
Nature Reviews Immunology | 2010
John E. Sims; Dirk E. Smith
Over recent years it has become increasingly clear that innate immune responses can shape the adaptive immune response. Among the most potent molecules of the innate immune system are the interleukin-1 (IL-1) family members. These evolutionarily ancient cytokines are made by and act on innate immune cells to influence their survival and function. In addition, they act directly on lymphocytes to reinforce certain adaptive immune responses. This Review provides an overview of both the long-established and more recently characterized members of the IL-1 family. In addition to their effects on immune cells, their involvement in human disease and disease models is discussed.
International Immunology | 2008
Molly D. Smithgall; Michael R. Comeau; Bo-Rin Park Yoon; Dawn Kaufman; Richard J. Armitage; Dirk E. Smith
IL-33 is an IL-1 family member recently identified as the ligand for T1/ST2 (ST2), a member of the IL-1 receptor family. ST2 is stably expressed on mast cells and T(h)2 effector T cells and its function has been studied in the context of T(h)2-associated inflammation. Indeed, IL-33 induces T(h)2 cytokines from mast cells and polarized mouse T cells and leads to pulmonary and mucosal T(h)2 inflammation when administered in vivo. To better understand how this pathway modulates inflammatory responses, we examined the activity of IL-33 on a variety of human immune cells. Human blood-derived basophils expressed high levels of ST2 receptor and responded to IL-33 by producing several pro-inflammatory cytokines including IL-1 beta, IL-4, IL-5, IL-6, IL-8, IL-13 and granulocyte macrophage colony-stimulating factor. Next, utilizing a human T(h)2-polarized T cell culture system derived from allergic donor blood cells, we found that IL-33 was able to enhance antigen-dependent and -independent T cell responses, including IL-5, IL-13 and IFN-gamma production. IL-33 activity was also tested on V alpha 24-positive human invariant NKT (iNKT) cells. In the presence of alpha-galactosylceramide antigen presentation, IL-33 dose dependently enhanced iNKT production of several cytokines, including both IL-4 and IFN-gamma. IL-33 also directly induced IFN-gamma production from both iNKT and human NK cells via cooperation with IL-12. Taken together, these results indicate that in addition to its activity on human mast cells, IL-33 is capable of activating human basophils, polarized T cells, iNKT and NK cells. Moreover, the nature of the responses elicited by IL-33 suggests that this axis may amplify both T(h)1- and T(h)2-oriented immune responses.
Journal of Immunology | 2007
Zoulfia Allakhverdi; Dirk E. Smith; Michael R. Comeau; Guy Delespesse
IL-33, the natural ligand of the IL-1 receptor family member ST2L, is known to enhance experimental allergic-type inflammatory responses by costimulating the production of cytokines from activated Th2 lymphocytes. Although ST2L has long been known to be expressed by mast cells, its role in their biology has not been explored. In this study we report that IL-33 directly stimulates primary human mast cells (MCs) to produce several proinflammatory cytokines and chemokines and also exerts a permissive effect on the MCs response to thymic stromal lymphopoietin, a recently described potent MCs activator. IL-33 also acts both alone and in concert with thymic stromal lymphopoietin to accelerate the in vitro maturation of CD34+ MC precursors and induce the secretion of Th2 cytokines and Th2-attracting chemokines. Taken together, these results suggest that IL-33 may play an important role in mast cell-mediated inflammation and further emphasize the role of innate immunity in allergic diseases.
Journal of Biological Chemistry | 2000
Dirk E. Smith; Blair R. Renshaw; Randal R. Ketchem; Marek Kubin; Kirsten E. Garka; John E. Sims
We report here the cloning and characterization of four new members of the interleukin-1 (IL-1) family (FIL1δ, FIL1ε, FIL1ζ, and FIL1η, with FIL1 standing for “Family of IL-1”). The novel genes demonstrate significant sequence similarity to IL-1α, IL-1β, IL-1ra, and IL-18, and in addition maintain a conserved exon-intron arrangement that is shared with the previously known members of the family. Protein structure modeling also suggests that the FIL1 genes are related to IL-1β and IL-1ra. The novel genes form a cluster with the IL-1s on the long arm of human chromosome 2.
Arthritis & Rheumatism | 2009
Gaby Palmer; Dominique Talabot-Ayer; Céline Lamacchia; Dean Toy; Christian Alexander Seemayer; Sébastien Viatte; Axel Finckh; Dirk E. Smith; Cem Gabay
OBJECTIVE Interleukin-33 (IL-33; or, IL-1F11) was recently identified as the ligand of the IL-1 family receptor T1/ST2. The aim of this study was to examine IL-33 production in human and mouse joints and to investigate the role of IL-33 and T1/ST2 in experimental arthritis. METHODS IL-33 expression was examined in human synovial tissue, rheumatoid arthritis (RA) synovial fibroblasts, and arthritic mouse joints. Mice with collagen-induced arthritis (CIA) were treated with blocking anti-ST2 antibody or control antibody beginning at the onset of disease. Arthritis severity was assessed by clinical and histologic scoring. Draining lymph node (LN) cell responses were examined ex vivo, and joint messenger RNA (mRNA) was used for expression profiling. RESULTS IL-33 was highly expressed in human RA synovium. In cultured synovial fibroblasts, IL-33 expression was strongly induced by IL-1beta and/or tumor necrosis factor alpha. Furthermore, IL-33 mRNA was detected in the joints of mice with CIA and increased during the early phase of the disease. Administration of a blocking anti-ST2 antibody at the onset of disease attenuated the severity of CIA and reduced joint destruction. Anti-ST2 antibody treatment was associated with a marked decrease in interferon-gamma production as well as with a more limited reduction in IL-17 production by ex vivo-stimulated draining LN cells. Finally, RANKL mRNA levels in the joint were reduced by anti-ST2 treatment. CONCLUSION IL-33 is produced locally in inflamed joints, and neutralization of IL-33 signaling has a therapeutic effect on the course of arthritis. These observations suggest that locally produced IL-33 may contribute to the pathogenesis of joint inflammation and destruction.
The Journal of Allergy and Clinical Immunology | 2012
Hye Young Kim; Ya-Jen Chang; Srividya Subramanian; Hyun-Hee Lee; Lee A. Albacker; Ponpan Matangkasombut; Paul B. Savage; Andrew N. J. McKenzie; Dirk E. Smith; James B. Rottman; Rosemarie H. DeKruyff; Dale T. Umetsu
BACKGROUND Asthma has been considered an immunologic disease mediated by T(H)2 cells and adaptive immunity. However, clinical and experimental observations suggest that additional pathways might regulate asthma, particularly in its nonallergic forms, such as asthma associated with air pollution, stress, obesity, and infection. OBJECTIVES Our goal was to understand T(H)2 cell-independent conditions that might lead to airway hyperreactivity (AHR), a cardinal feature of asthma. METHODS We examined a murine model of experimental asthma in which AHR was induced with glycolipid antigens, which activate natural killer T (NKT) cells. RESULTS In this model AHR developed rapidly when mice were treated with NKT cell-activating glycolipid antigens, even in the absence of conventional CD4(+) T cells. The activated NKT cells directly induced alveolar macrophages to produce IL-33, which in turn activated NKT cells, as well as natural helper cells, a newly described non-T, non-B, innate lymphoid cell type, to increase production of IL-13. Surprisingly, this glycolipid-induced AHR pathway required not only IL-13 but also IL-33 and its receptor, ST2, because it was blocked by an anti-ST2 mAb and was greatly reduced in ST2(-/-) mice. When adoptively transferred into IL-13(-/-) mice, both wild-type natural helper cells and NKT cells were sufficient for the development of glycolipid-induced AHR. CONCLUSION Because plant pollens, house dust, and some bacteria contain glycolipids that can directly activate NKT cells, these studies suggest that AHR and asthma can fully develop or be greatly enhanced through innate immune mechanisms involving IL-33, natural helper cells, and NKT cells.
The Journal of Allergy and Clinical Immunology | 2009
Zoulfia Allakhverdi; Michael R. Comeau; Dirk E. Smith; Dean Toy; Leandra Mfuna Endam; Martin Desrosiers; Yong-Jun Liu; Karen Howie; Judah A. Denburg; Gail M. Gauvreau; Guy Delespesse
BACKGROUND In steady state, hemopoietic progenitors constantly egress from the bone marrow (BM) into the blood and circulate through the peripheral tissues. In allergic diseases, the BM releases increased numbers of CD34(+) progenitor cells that migrate to the site of allergic inflammation, where they differentiate into tissue-dwelling and classic effector cells of allergy, such as mast cells, eosinophils, and basophils. OBJECTIVE To examine whether peripheral blood CD34(+) cells in addition to being progenitors may also directly function as inflammatory effector cells. METHODS Highly purified neonatal or adult blood CD34(+) cells were examined for the expression of thymic stromal lymphopoietin (TSLP) and IL-33 receptors and for their response to these cytokines as well as to supernatants of primary small airway epithelial cells and nasal explants from rhinosinusitis and control subjects. Sputum of patients with asthma was examined before and after allergen inhalation for the presence of IL-5 and IL-13-containing CD34(+) cells. RESULTS Circulating CD34(+) cells expressed receptors for TSLP and IL-33 and responded to these cytokines by rapidly releasing high levels of proinflammatory T(H)2-like cytokines and chemokines. These cells were activated in a TSLP-dependent manner by the supernatant fluids from activated primary human small airway epithelial cells and from nasal explants of patients with chronic rhinosinusitis. Moreover, activated CD34(+) cells containing IL-5 and IL-13 could be detected in the sputum of individuals with allergic asthma, with numbers increasing in response to specific allergen inhalation challenge. CONCLUSION Blood CD34(+) cells, in addition to being progenitors, may act as proinflammatory effector cells by themselves and directly contribute to the allergic inflammation.
Nature Immunology | 2010
Charles A. Dinarello; William P. Arend; John E. Sims; Dirk E. Smith; Hal Blumberg; Luke A. J. O'Neill; Raphaela Goldbach-Mansky; Theresa T. Pizarro; Hal M. Hoffman; Philip Bufler; Marcel F. Nold; Pietro Ghezzi; Alberto Mantovani; Cecilia Garlanda; Diana Boraschi; Anna Rubartelli; Mihai G. Netea; Jos W. M. van der Meer; Leo A. B. Joosten; Thomas Mandrup-Poulsen; Marc Y. Donath; Eli C. Lewis; Josef Pfeilschifter; Michael Martin; Michael Kracht; H. Muehl; Daniela Novick; Miodrag L. Lukic; Bruno Conti; Alan M. Solinger
To the Editor: Newly cloned interleukin 1 (IL-1) family members1–3 were originally given an IL-1 family (IL-1F) designation4, but as functions have now been elucidated for several of these5,6, we propose that each now be assigned an individual interleukin designation. IL-1F6, IL-1F8 and IL-1F9 are encoded by distinct genes but use the same receptor complex (IL-1Rrp2 and AcP), are proinflammatory and deliver nearly identical signals7–12. We propose these be designated IL-36α, IL-36β and IL-36γ, respectively. IL-1F5 also binds to IL-1Rrp2 but antagonizes those cytokines in a manner analogous to that used by IL-1Ra to antagonize IL-1α and IL-1β7–9. We propose that IL-1F5 be renamed IL-36Ra (for ‘receptor antagonist’). In the IL-1 nomenclature, IL-1Ra is used for the natural product, whereas IL-1ra is used for the recombinant product; therefore, IL-36Ra is appropriate for natural IL-1F5. IL-1F7 produces anti-inflammatory effects by suppressing innate immune responses; it does this by decreasing the production of inflammatory cytokines induced by Toll-like receptor agonists as well as that of IL-1 and tumor necrosis factor13,14. We propose this IL-1 family member be renamed IL-37. IL-1F7 has various splice forms1,2,15,16, of which IL-1F7b is the most studied. We propose that IL-1F7a, IL-1F7b and so on be renamed IL-37a, IL-37b and so on. The one remaining IL-1 family member, for which no function has yet been demonstrated, is IL-1F10; however, as evidence of its properties remains limited, we suggest that it retain its IL-1F designation until a function is clearly identified, although it might be prudent to reserve the designation IL-38 for this eventuality.
Trends in Immunology | 2001
John E. Sims; Yang Pan; Dirk E. Smith; Martin J.H. Nicklin; Jenny L. Barton; J. Fernando Bazan; Robert A. Kastelein; Samantha J Busfield; John E Ford; Haishan Lin; Julio J Mulero; Sanjay Kumar; James Pan; Peter R. Young
of six novel members of the interleukin-1 (IL-1) gene family1–6 (see E. Dunn et al., pp. 533–536). The designation of these novel genes as relatives of the previously known family members encoding IL-1α, IL-1β, IL-1 receptor antagonist (IL-1ra) and IL-18 is based on their conservation of amino acid sequence, identity of gene structure, and (probable) adoption of the same three-dimensional fold. Unfortunately, there are as many different systems of nomenclature for the novel genes as there are groups that have cloned them – a situation that has led to much TRENDS in Immunology Vol.22 No.10 October 2001