Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk G. de Rooij is active.

Publication


Featured researches published by Dirk G. de Rooij.


Nature Genetics | 2004

Plzf is required in adult male germ cells for stem cell self-renewal.

F. William Buaas; Andrew L. Kirsh; Manju Sharma; Derek J. McLean; Jamie L Morris; Michael D. Griswold; Dirk G. de Rooij; Robert E. Braun

Adult germline stem cells are capable of self-renewal, tissue regeneration and production of large numbers of differentiated progeny. We show here that the classical mouse mutant luxoid affects adult germline stem cell self-renewal. Young homozygous luxoid mutant mice produce limited numbers of normal spermatozoa and then progressively lose their germ line after birth. Transplantation studies showed that germ cells from mutant mice did not colonize recipient testes, suggesting that the defect is intrinsic to the stem cells. We determined that the luxoid mutant contains a nonsense mutation in the gene encoding Plzf, a transcriptional repressor that regulates the epigenetic state of undifferentiated cells, and showed that Plzf is coexpressed with Oct4 in undifferentiated spermatogonia. This is the first gene shown to be required in germ cells for stem cell self-renewal in mammals.


Nature Genetics | 2001

Sox9 induces testis development in XX transgenic mice

Valerie Vidal; Marie-Christine Chaboissier; Dirk G. de Rooij; Andreas Schedl

Mutations in SOX9 are associated with male-to-female sex reversal in humans. To analyze Sox9 function during sex determination, we ectopically expressed this gene in XX gonads. Here, we show that Sox9 is sufficient to induce testis formation in mice, indicating that it can substitute for the sex-determining gene Sry.


Current Opinion in Cell Biology | 1998

Spermatogonial stem cells

Dirk G. de Rooij; J. Anton Grootegoed

The mammalian seminiferous epithelium consists of a highly complex yet well-organized cell population, with germ cells in mitosis and meiosis and postmeiotic cells undergoing transformation to become spermatozoa. To study the factors which control renewal and differentiation of spermatogonial stem cells, animal models are now available which allow for arrest and restart of spermatogonial differentiation. In addition, marked progress has been made in understanding the control of apoptosis and its role in spermatogonia. For the future, spermatogonial stem cell transplantation may have important practical applications.


Mutation Research | 1993

A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse

Ruud A.J. Tagelenbosch; Dirk G. de Rooij

Abstract In whole mounts of seminiferous tubules of C3H/101 F1 hybrid mice, spermatogonia were counted in various stages of the epithelial cycle. Furthermore, the total number of Sertoli cells per testis was estimated using the disector method. Subsequently, estimates were made of the total numbers of the different spermatogonial cell populations per testis. The results of the cell counts indicate that the undifferentiated spermatogonia are actively proliferating from stage XI until stage IV. Three divisions of the undifferentiated spermatogonia are needed to obtain the number of A1 plus undifferentiated spermatogonia produced each epithelial cycle. Around stage VIII almost two-thirds of the Apr and all of the Aal spermatogonia differentiate into A1 spermatogonia. It was estimated that there are 2.5 × 106 differentiating spermatogonia and 3.3 × 105 undifferentiated spermatogonia per testis. There are about 35,000 stem cells per testis, constituting about 0.03% of all germ cells in the testis. It is concluded that the undifferentiated spermatogonia, including the stem cells, actively proliferate during about 50% of the epithelial cycle.


Development | 2004

Functional analysis of Sox8 and Sox9 during sex determination in the mouse

Marie-Christine Chaboissier; Akio Kobayashi; Valerie I.P. Vidal; Susanne Lützkendorf; Henk J.G. van de Kant; Michael Wegner; Dirk G. de Rooij; Richard R. Behringer; Andreas Schedl

Sex determination in mammals directs an initially bipotential gonad to differentiate into either a testis or an ovary. This decision is triggered by the expression of the sex-determining gene Sry, which leads to the activation of male-specific genes including the HMG-box containing gene Sox9. From transgenic studies in mice it is clear that Sox9 is sufficient to induce testis formation. However, there is no direct confirmation for an essential role for Sox9 in testis determination. The studies presented here are the first experimental proof for an essential role for Sox9 in mediating a switch from the ovarian pathway to the testicular pathway. Using conditional gene targeting, we show that homozygous deletion of Sox9 in XY gonads interferes with sex cord development and the activation of the male-specific markers Mis and P450scc, and leads to the expression of the female-specific markers Bmp2 and follistatin. Moreover, using a tissue specific knock-out approach, we show that Sox9 is involved in Sertoli cell differentiation, the activation of Mis and Sox8, and the inactivation of Sry. Finally, double knock-out analyses suggest that Sox8 reinforces Sox9 function in testis differentiation of mice.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice

Ericka L. Anderson; Andrew E. Baltus; Hermien L. Roepers-Gajadien; Terry Hassold; Dirk G. de Rooij; Ans M.M. van Pelt; David C. Page

In eukaryotes, diploid cells give rise to haploid cells via meiosis, a program of two cell divisions preceded by one round of DNA replication. Although key molecular components of the meiotic apparatus are highly conserved among eukaryotes, the mechanisms responsible for initiating the meiotic program have diverged substantially among eukaryotes. This raises a related question in animals with two distinct sexes: Within a given species, are similar or different mechanisms of meiotic initiation used in the male and female germ lines? In mammals, this question is underscored by dramatic differences in the timing of meiotic initiation in males and females. Stra8 is a vertebrate-specific, cytoplasmic factor expressed by germ cells in response to retinoic acid. We previously demonstrated that Stra8 gene function is required for meiotic initiation in mouse embryonic ovaries. Here we report that, on an inbred C57BL/6 genetic background, the same factor is also required for meiotic initiation in germ cells of juvenile mouse testes. In juvenile C57BL/6 males lacking Stra8 gene function, the early mitotic development of germ cells appears to be undisturbed. However, these cells then fail to undergo the morphological changes that define meiotic prophase, and they do not display the molecular hallmarks of meiotic chromosome cohesion, synapsis and recombination. We conclude that, in mice, Stra8 regulates meiotic initiation in both spermatogenesis and oogenesis. Taken together with previous observations, our present findings indicate that, in both the male and female germ lines, meiosis is initiated through retinoic acid induction of Stra8.


Nature Genetics | 2006

In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication

Andrew E. Baltus; Douglas B. Menke; Yueh-Chiang Hu; Mary L. Goodheart; Anne E. Carpenter; Dirk G. de Rooij; David C. Page

The transition from mitosis to meiosis is a defining juncture in the life cycle of sexually reproducing organisms. In yeast, the decision to enter meiosis is made before the single round of DNA replication that precedes the two meiotic divisions. We present genetic evidence of an analogous decision point in the germ line of a multicellular organism. The mouse Stra8 gene is expressed in germ cells of embryonic ovaries, where meiosis is initiated, but not in those of embryonic testes, where meiosis does not begin until after birth. Here we report that in female embryos lacking Stra8 gene function, the early, mitotic development of germ cells is normal, but these cells then fail to undergo premeiotic DNA replication, meiotic chromosome condensation, cohesion, synapsis and recombination. Combined with previous findings, these genetic data suggest that active differentiation of ovarian germ cells commences at a regulatory point upstream of premeiotic DNA replication.


Human Molecular Genetics | 2008

Activation of β-catenin signaling by Rspo1 controls differentiation of the mammalian ovary

Anne Amandine Chassot; Fariba Ranc; Elodie P. Gregoire; Hermien L. Roepers-Gajadien; Makoto M. Taketo; Giovanna Camerino; Dirk G. de Rooij; Andreas Schedl; Marie-Christine Chaboissier

The sex of an individual is determined by the fate of the gonad. While the expression of Sry and Sox9 is sufficient to induce male development, we here show that female differentiation requires activation of the canonical beta-catenin signaling pathway. beta-catenin activation is controlled by Rspo1 in XX gonads and Rspo1 knockout mice show masculinized gonads. Molecular analyses demonstrate an absence of female-specific activation of Wnt4 and as a consequence XY-like vascularization and steroidogenesis. Moreover, germ cells of XX knockout embryos show changes in cellular adhesions and a failure to enter XX specific meiosis. Sex cords develop around birth, when Sox9 becomes strongly activated. Thus, a balance between Sox9 and beta-catenin activation determines the fate of the gonad, with Rspo1 acting as a crucial regulator of canonical beta-catenin signaling required for female development.


JAMA | 2009

Propagation of human spermatogonial stem cells in vitro.

Hooman Sadri-Ardekani; Sefika C. Mizrak; Saskia K.M. van Daalen; Cindy M. Korver; Hermien L. Roepers-Gajadien; Morteza Koruji; Suzanne E. Hovingh; Theo M. de Reijke; Jean de la Rosette; Fulco van der Veen; Dirk G. de Rooij; Sjoerd Repping; Ans M.M. van Pelt

CONTEXT Young boys treated with high-dose chemotherapy are often confronted with infertility once they reach adulthood. Cryopreserving testicular tissue before chemotherapy and autotransplantation of spermatogonial stem cells at a later stage could theoretically allow for restoration of fertility. OBJECTIVE To establish in vitro propagation of human spermatogonial stem cells from small testicular biopsies to obtain an adequate number of cells for successful transplantation. DESIGN, SETTING, AND PARTICIPANTS Study performed from April 2007 to July 2009 using testis material donated by 6 adult men who underwent orchidectomy as part of prostate cancer treatment. Testicular cells were isolated and cultured in supplemented StemPro medium; germline stem cell clusters that arose were subcultured on human placental laminin-coated dishes in the same medium. Presence of spermatogonia was determined by reverse transcriptase polymerase chain reaction and immunofluorescence for spermatogonial markers. To test for the presence of functional spermatogonial stem cells in culture, xenotransplantation to testes of immunodeficient mice was performed, and migrated human spermatogonial stem cells after transplantation were detected by COT-1 fluorescence in situ hybridization. The number of colonized spermatogonial stem cells transplanted at early and later points during culture were counted to determine propagation. MAIN OUTCOME MEASURES Propagation of spermatogonial stem cells over time. RESULTS Testicular cells could be cultured and propagated up to 15 weeks. Germline stem cell clusters arose in the testicular cell cultures from all 6 men and could be subcultured and propagated up to 28 weeks. Expression of spermatogonial markers on both the RNA and protein level was maintained throughout the entire culture period. In 4 of 6 men, xenotransplantation to mice demonstrated the presence of functional spermatogonial stem cells, even after prolonged in vitro culture. Spermatogonial stem cell numbers increased 53-fold within 19 days in the testicular cell culture and increased 18,450-fold within 64 days in the germline stem cell subculture. CONCLUSION Long-term culture and propagation of human spermatogonial stem cells in vitro is achievable.


Cell Death & Differentiation | 1998

The role of the tumor suppressor p53 in spermatogenesis.

Tim L. Beumer; Hermien L. Roepers-Gajadien; Iris S. Gademan; P.P.W. van Buul; G. Gil-Gomez; Derk H. Rutgers; Dirk G. de Rooij

The p53 protein appeared to be involved in both spermatogonial cell proliferation and radiation response. During normal spermatogenesis in the mouse, spermatogonia do not express p53, as analyzed by immunohistochemistry. However, after a dose of 4 Gy of X-rays, a distinct p53 staining was present in spermatogonia, suggesting that, in contrast to other reports, p53 does have a role in spermatogonia. To determine the possible role of p53 in spermatogonia, histological analysis was performed in testes of both p53 knock out C57BL/6 and FvB mice. The results indicate that p53 is an important factor in normal spermatogonial cell production as well as in the regulation of apoptosis after DNA damage. First, p53 knock out mouse testes contained about 50% higher numbers of A1 spermatogonia, indicating that the production of differentiating type spermatogonia by the undifferentiated spermatogonia is enhanced in these mice. Second, 10 days after a dose of 5 Gy of X-rays, in the p53 knock out testes, increased numbers of giant sized spermatogonial stem cells were found, indicating disturbance of the apoptotic process in these cells. Third, in the p53 knock out testis, the differentiating A2-B spermatogonia are more radioresistant compared to their wild-type controls, indicating that p53 is partly indispensable in the removal of lethally irradiated differentiating type spermatogonia. In accordance with our immunohistochemical data, Western analysis showed that levels of p53 are increased in total adult testis lysates after irradiation. These data show that p53 is important in the regulation of cell production during normal spermatogenesis either by regulation of cell proliferation or, more likely, by regulating the apoptotic process in spermatogonia. Furthermore, after irradiation, p53 is important in the removal of lethally damaged spermatogonia.

Collaboration


Dive into the Dirk G. de Rooij's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katja J. Teerds

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. F. G. Rommerts

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge