Dirk Jancke
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dirk Jancke.
Nature | 2004
Dirk Jancke; Frédéric Chavane; Shmuel Naaman; Amiram Grinvald
Exploring visual illusions reveals fundamental principles of cortical processing. Illusory motion perception of non-moving stimuli was described almost a century ago by Gestalt psychologists. However, the underlying neuronal mechanisms remain unknown. To explore cortical mechanisms underlying the ‘line-motion’ illusion, we used real-time optical imaging, which is highly sensitive to subthreshold activity. We examined, in the visual cortex of the anaesthetized cat, responses to five stimuli: a stationary small square and a long bar; a moving square; a drawn-out bar; and the well-known line-motion illusion, a stationary square briefly preceding a long stationary bar presentation. Whereas flashing the bar alone evoked the expected localized, short latency and high amplitude activity patterns, presenting a square 60–100 ms before a bar induced the dynamic activity patterns resembling that of fast movement. The preceding square, even though physically non-moving, created gradually propagating subthreshold cortical activity that must contribute to illusory motion, because it was indistinguishable from cortical representations of real motion in this area. These findings demonstrate the effect of spatio-temporal patterns of subthreshold synaptic potentials on cortical processing and the shaping of perception.
Journal of Neuroscience Methods | 1999
Wolfram Erlhagen; Annette Bastian; Dirk Jancke; Alexa Riehle; Gregor Schöner
In many cortical areas, simple stimuli or task conditions activate large populations of neurons. We hypothesize that such populations support processes of interaction within parametric representations and integration of multiple sources of input and we propose to study these processes using distributions of population activation (DPAs) as a tool. Such distributions can be viewed as neuronal representations of continuous stimulus or task parameters. They are built from basis functions contributed by each neuron. These functions may be explicitly chosen based on tuning curves or receptive field profiles. Or they may be determined by minimizing the distance between chosen target distributions and the constructed DPAs. In both cases, construction of the DPA is based on a set of reference conditions in which the stimulus or task parameters are sampled experimentally. In a second step, basis functions are kept fixed, and the DPAs are used to explore time dependent processing, interaction and integration of information. For instance, stimuli which simultaneously specify multiple parameter values can be used to study interactions within the parametric representation. We review an experiment, in which the representation of retinal position is probed in this way, revealing fast excitatory interactions among neurons representing similar retinal positions and slower inhibitory interactions among neurons representing dissimilar retinal positions. Similarly, DPAs can be used to analyze different sources of input that are fused within a parametric representation. We review an experiment in which the representation of the direction of goal-directed arm movements in motor and premotor cortex is studied when prior and current information about upcoming movement tasks are integrated.
The Journal of Physiology | 2004
Dirk Jancke; Wolfram Erlhagen; Gregor Schöner; Hubert R. Dinse
Psychophysical evidence in humans indicates that localization is different for stationary flashed and coherently moving objects. To address how the primary visual cortex represents object position we used a population approach that pools spiking activity of many neurones in cat area 17. In response to flashed stationary squares (0.4 deg) we obtained localized activity distributions in visual field coordinates, which we referred to as profiles across a ‘population receptive field’ (PRF). We here show how motion trajectories can be derived from activity across the PRF and how the representation of moving and flashed stimuli differs in position. We found that motion was represented by peaks of population activity that followed the stimulus with a speed‐dependent lag. However, time‐to‐peak latencies were shorter by ∼16 ms compared to the population responses to stationary flashes. In addition, motion representation showed a directional bias, as latencies were more reduced for peripheral‐to‐central motion compared to the opposite direction. We suggest that a moving stimulus provides ‘preactivation’ that allows more rapid processing than for a single flash event.
Frontiers in Systems Neuroscience | 2011
Frédéric Chavane; Dahlia Sharon; Dirk Jancke; Olivier Marre; Yves Frégnac; Amiram Grinvald
Neurons in the primary visual cortex receive subliminal information originating from the periphery of their receptive fields (RF) through a variety of cortical connections. In the cat primary visual cortex, long-range horizontal axons have been reported to preferentially bind to distant columns of similar orientation preferences, whereas feedback connections from higher visual areas provide a more diverse functional input. To understand the role of these lateral interactions, it is crucial to characterize their effective functional connectivity and tuning properties. However, the overall functional impact of cortical lateral connections, whatever their anatomical origin, is unknown since it has never been directly characterized. Using direct measurements of postsynaptic integration in cat areas 17 and 18, we performed multi-scale assessments of the functional impact of visually driven lateral networks. Voltage-sensitive dye imaging showed that local oriented stimuli evoke an orientation-selective activity that remains confined to the cortical feedforward imprint of the stimulus. Beyond a distance of one hypercolumn, the lateral spread of cortical activity gradually lost its orientation preference approximated as an exponential with a space constant of about 1 mm. Intracellular recordings showed that this loss of orientation selectivity arises from the diversity of converging synaptic input patterns originating from outside the classical RF. In contrast, when the stimulus size was increased, we observed orientation-selective spread of activation beyond the feedforward imprint. We conclude that stimulus-induced cooperativity enhances the long-range orientation-selective spread.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Ganna Palagina; Ulf T. Eysel; Dirk Jancke
Sensory deprivation caused by peripheral injury can trigger functional cortical reorganization across the initially silenced cortical area. It is proposed that intracortical connectivity enables recovery of function within such a lesion projection zone (LPZ), thus substituting lost subcortical input. Here, we investigated retinal lesion-induced changes in the function of lateral connections in the primary visual cortex of the adult rat. Using voltage-sensitive dye recordings, we visualized in millisecond-time resolution spreading synaptic activity across the LPZ. Shortly after lesion, the majority of neurons within the LPZ were subthresholdly activated by delayed propagation of activity that originated from unaffected cortical regions. With longer recovery time, latencies within the LPZ gradually decreased, and activation reached suprathreshold levels. Targeted electrode recordings confirmed that receptive fields of intra-LPZ neurons were displaced to the retinal lesion border while displaying normal orientation and direction selectivity. These results corroborate the view that cortical horizontal connections have a central role in functional reorganization, as revealed here by progressive facilitation of synaptic activity and the traveling wave of excitation that propagates horizontally into the deprived cortical region.
PLOS Computational Biology | 2010
Valentin Markounikau; Christian Igel; Amiram Grinvald; Dirk Jancke
A neural field model is presented that captures the essential non-linear characteristics of activity dynamics across several millimeters of visual cortex in response to local flashed and moving stimuli. We account for physiological data obtained by voltage-sensitive dye (VSD) imaging which reports mesoscopic population activity at high spatio-temporal resolution. Stimulation included a single flashed square, a single flashed bar, the line-motion paradigm – for which psychophysical studies showed that flashing a square briefly before a bar produces sensation of illusory motion within the bar – and moving squares controls. We consider a two-layer neural field (NF) model describing an excitatory and an inhibitory layer of neurons as a coupled system of non-linear integro-differential equations. Under the assumption that the aggregated activity of both layers is reflected by VSD imaging, our phenomenological model quantitatively accounts for the observed spatio-temporal activity patterns. Moreover, the model generalizes to novel similar stimuli as it matches activity evoked by moving squares of different speeds. Our results indicate that feedback from higher brain areas is not required to produce motion patterns in the case of the illusory line-motion paradigm. Physiological interpretation of the model suggests that a considerable fraction of the VSD signal may be due to inhibitory activity, supporting the notion that balanced intra-layer cortical interactions between inhibitory and excitatory populations play a major role in shaping dynamic stimulus representations in the early visual cortex.
Neurocomputing | 2001
Christian Igel; Wolfram Erlhagen; Dirk Jancke
Abstract There is a growing interest in using dynamic neural fields for modeling biological and technical systems, but constructive ways to set up such models are still missing. We discuss gradient-based, evolutionary and hybrid algorithms for data-driven adaptation of neural field parameters. The proposed methods are evaluated using artificial and neuro-physiological data.
Visual Cognition | 2004
Wolfram Erlhagen; Dirk Jancke
When observers are asked to remember the final location of an object undergoing apparent or implied motion, a forward displacement is observed. The magnitude of this form of motion extrapolation is known to depend on various factors including stimulus attributes, action plans, and other cognitive cues. Here we present a modelling approach that aims at bridging different existing theories of displacement within a single theoretical framework. A network model consisting of interacting excitatory and inhibitory cell populations coding for stimulus attributes like position or orientation is used to study the response to motion displays. The intrinsic network dynamics can be modulated by additional information sources representing action plans directed at the moving target or cognitive cues such as prior knowledge about the trajectory. These factors decide the extent to which the dynamic representation overshoots the final position. The model predictions are quantitatively compared with the experimental findings. The results are discussed in relation to theoretical ideas about processing principles underlying motion extrapolation and a comparison with neurophysiological findings linked to movement prediction is made.
Cerebral Cortex | 2011
Selim Onat; Peter König; Dirk Jancke
Neurons in primary visual cortex have been characterized by their selectivity to orientation, spatiotemporal frequencies, and motion direction, among others all essential parameters to decompose complex image structure. However, their concerted functioning upon real-world visual dynamics remained unobserved since most studies tested these parameters in isolation rather than in rich mixture. We used voltage-sensitive dye imaging to characterize population responses to natural scene movies, and for comparison, to well-established moving gratings. For the latter, we confirm previous observations of a deceleration/acceleration notch. Upon stimulation with natural movies, however, a subsequent acceleration component was almost absent. Furthermore, we found that natural stimuli revealed sparsely distributed nonseparable space-time dynamics, continuously modulated by movie motion. Net excitation levels detected with gratings were reached only rarely with natural movies. Emphasizing this observation, across the entire time course, both average and peak amplitudes were lower than nonspecific, that is, minimum, activity obtained for gratings. We estimated a necessary increase of ∼30% of movie contrast to match high grating activity levels. Our results suggest that in contrast to gratings, processing of complex natural input is based on a balanced and stationary interplay between excitation and inhibition and point to the importance of suppressive mechanisms in shaping the operating regime of cortical dynamics.
The Journal of Neuroscience | 2010
Benedict Shien Wei Ng; Agnieszka Grabska-Barwińska; Onur Güntürkün; Dirk Jancke
The pigeon is a widely established behavioral model of visual cognition, but the processes along its most basic visual pathways remain mostly unexplored. Here, we report the neuronal population dynamics of the visual Wulst, an assumed homolog of the mammalian striate cortex, captured for the first time with voltage-sensitive dye imaging. Responses to drifting gratings were characterized by focal emergence of activity that spread extensively across the entire Wulst, followed by rapid adaptation that was most effective in the surround. Using additional electrophysiological recordings, we found cells that prefer a variety of orientations. However, analysis of the imaged spatiotemporal activation patterns revealed no clustered orientation map-like arrangements as typically found in the primary visual cortices of many mammalian species. Instead, the vertical orientation was overrepresented, both in terms of the imaged population signal, as well as the number of neurons preferring the vertical orientation. Such enhanced selectivity for the vertical orientation may result from horizontal motion vectors that trigger adaptation to the extensive flow field input during natural behavior. Our findings suggest that, although the avian visual Wulst is homologous to the primary visual cortex in terms of its gross anatomical connectivity and topology, its detailed operation and internal organization is still shaped according to specific input characteristics.