Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Mohn is active.

Publication


Featured researches published by Dirk Mohn.


Biomaterials | 2008

Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites.

Superb K. Misra; Dirk Mohn; Tobias J. Brunner; Wendelin J. Stark; Sheryl E. Philip; Ipsita Roy; Vehid Salih; Jonathan C. Knowles; Aldo R. Boccaccini

This study compares the effects of introducing micro (m-BG) and nanoscale (n-BG) bioactive glass particles on the various properties (thermal, mechanical and microstructural) of poly(3hydroxybutyrate) (P(3HB))/bioactive glass composite systems. P(3HB)/bioactive glass composite films with three different concentrations of m-BG and n-BG (10, 20 and 30 wt%, respectively) were prepared by a solvent casting technique. The addition of n-BG particles had a significant stiffening effect on the composites, modulus when compared with m-BG. However, there were no significant differences in the thermal properties of the composites due to the addition of n-BG and m-BG particles. The systematic addition of n-BG particles induced a nanostructured topography on the surface of the composites, which was not visible by SEM in m-BG composites. This surface effect induced by n-BG particles considerably improved the total protein adsorption on the n-BG composites compared to the unfilled polymer and the m-BG composites. A short term in vitro degradation (30 days) study in simulated body fluid (SBF) showed a high level of bioactivity as well as higher water absorption for the P(3HB)/n-BG composites. Furthermore, a cell proliferation study using MG-63 cells demonstrated the good biocompatibility of both types of P(3HB)/bioactive glass composite systems. The results of this investigation confirm that the addition of nanosized bioactive glass particles had a more significant effect on the mechanical and structural properties of a composite system in comparison with microparticles, as well as enhancing protein adsorption, two desirable effects for the application of the composites in tissue engineering.


Biomaterials | 2011

Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function

Benedetto Marelli; Chiara E. Ghezzi; Dirk Mohn; Wendelin J. Stark; Jake E. Barralet; Aldo R. Boccaccini; Showan N. Nazhat

Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy.


Biomaterials | 2010

Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications

Superb K. Misra; Tahera Ansari; Sabeel P. Valappil; Dirk Mohn; Sheryl E. Philip; Wendelin J. Stark; Ipsita Roy; Jonathan C. Knowles; Vehid Salih; Aldo R. Boccaccini

Poly(3-hydroxybutyrate) (P(3HB)) foams exhibiting highly interconnected porosity (85% porosity) were prepared using a unique combination of solvent casting and particulate leaching techniques by employing commercially available sugar cubes as porogen. Bioactive glass (BG) particles of 45S5 Bioglass grade were introduced in the scaffold microstructure, both in micrometer ((m-BG), <5 microm) and nanometer ((n-BG), 30 nm) sizes. The in vitro bioactivity of the P(3HB)/BG foams was confirmed within 10 days of immersion in simulated body fluid and the foams showed high level of protein adsorption. The foams interconnected porous microstructure proved to be suitable for MG-63 osteoblast cell attachment and proliferation. The foams implanted in rats as subcutaneous implants resulted in a non-toxic and foreign body response after one week of implantation. In addition to showing bioactivity and biocompatibility, the P(3HB)/BG composite foams also exhibited bactericidal properties, which was tested on the growth of Staphylococcus aureus. An attempt was made at developing multifunctional scaffolds by incorporating, in addition to BG, selected concentrations of Vitamin E or/and carbon nanotubes. P(3HB) scaffolds with multifunctionalities (viz. bactericidal, bioactive, electrically conductive, antioxidative behaviour) were thus produced, which paves the way for next generation of advanced scaffolds for bone tissue engineering.


Journal of the Royal Society Interface | 2010

Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites

Superb K. Misra; Tahera Ansari; Dirk Mohn; Sabeel P. Valappil; Tobias J. Brunner; Wendelin J. Stark; Ipsita Roy; Jonathan C. Knowles; Paul Sibbons; Eugenia Valsami Jones; Aldo R. Boccaccini; Vehid Salih

This work investigated the effect of adding nanoparticulate (29 nm) bioactive glass particles on the bioactivity, degradation and in vitro cytocompatibility of poly(3-hydroxybutyrate) (P(3HB)) composites/nano-sized bioactive glass (n-BG). Two different concentrations (10 and 20 wt %) of nanoscale bioactive glass particles of 45S5 Bioglass composition were used to prepare composite films. Several techniques (Raman spectroscopy, scanning electron microscopy, atomic force microscopy, energy dispersive X-ray) were used to monitor their surface and bioreactivity over a 45-day period of immersion in simulated body fluid (SBF). All results suggested the P(3HB)/n-BG composites to be highly bioactive, confirmed by the formation of hydroxyapatite on material surfaces upon immersion in SBF. The weight loss and water uptake were found to increase on increasing bioactive glass content. Cytocompatibility study (cell proliferation, cell attachment, alkaline phosphatase activity and osteocalcin production) using human MG-63 osteoblast-like cells in osteogenic and non-osteogenic medium showed that the composite substrates are suitable for cell attachment, proliferation and differentiation.


Journal of Dental Research | 2009

Fine-tuning of Bioactive Glass for Root Canal Disinfection

T Waltimo; Dirk Mohn; Frank Paqué; Tobias J. Brunner; Wendelin J. Stark; Thomas Imfeld; M Schätzle; Matthias Zehnder

An ideal preparation of 45S5 bioactive glass suspensions/slurries for root canal disinfection should combine high pH induction with capacity for continuing release of alkaline species. The hypothesis of this study was that more material per volume of bioactive glass slurry is obtained with a micrometric material (< 5 μm particle size) or a micrometric/ nanometric hybrid, rather than a solely nanometric counterpart. This should correlate with alkaline capacity and antimicrobial effectiveness. Slurries at the plastic limit were prepared with test and reference materials in physiological saline. Total mass and specific surface area of glass material per volume were determined. Continuous titration with hydrochloric acid was performed, and antimicrobial effectiveness was tested in extracted human premolars mono-infected with E. faecalis ATTC 29212 (N = 12 per material). While the nanometric slurry had a 12-fold higher specific surface area than the micrometric counterpart, the latter had a considerably higher alkaline capacity and disinfected significantly better (Fisher’s exact test, P < 0.05). The hybrid slurry behaved similarly to the micrometric preparation.


International Endodontic Journal | 2010

Radio‐opaque nanosized bioactive glass for potential root canal application: evaluation of radiopacity, bioactivity and alkaline capacity

Dirk Mohn; Matthias Zehnder; Thomas Imfeld; Wendelin J. Stark

AIM To produce novel nanosized bioactive glass particles with radio-opaque properties and high alkaline capacity and to evaluate their performance as a potential bioactive root canal dressing or filling material. METHODOLOGY Flame spray-derived bioactive glass particles in the nanometre range were produced including bismuth oxide as a radiopacifier. Calcium hydroxide, barium sulphate and bismuth oxide served as controls. Corresponding materials were compressed to obtain dense specimens with increased alkaline capacity. Radiopacity was evaluated, and in vitro bioactivity was monitored using Raman spectroscopy and scanning electron microscopy. Leaching of bismuth was controlled using atomic absorption spectroscopy. RESULTS Bioactive glass particles with up to 50 wt% bismuth oxide revealed radiopacity with an equivalent of 4.94-mm aluminium. The introduction of bismuth into the bioactive glass altered the alkaline capacity and the in vitro bioactivity only for high bismuth oxide quantities. Bismuth oxide leaching out of the glass matrix was hardly detectable. CONCLUSION Bioactive glass can be modified with bismuth oxide to become radio-opaque.


The Open Orthopaedics Journal | 2011

Biocompatibility and Bone Formation of Flexible, Cotton Wool-like PLGA/Calcium Phosphate Nanocomposites in Sheep

Oliver Schneider; Dirk Mohn; Roland Fuhrer; Karina Klein; Käthi Kämpf; Katja Nuss; Michèle Sidler; Katalin Zlinszky; Brigitte von Rechenberg; Wendelin J. Stark

Background: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. Materials and Methods: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. Results: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. Conclusions: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects.


Soft Matter | 2010

Elastomeric nanocomposites as cell delivery vehicles and cardiac support devices

Qizhi Chen; Liyu Jin; Wayne D. Cook; Dirk Mohn; Ebba L. Lagerqvist; David A. Elliott; John M. Haynes; Nicholas R. Boyd; Wendelin J. Stark; Colin W. Pouton; Edouard G. Stanley; Andrew G. Elefanty

A new family of elastomeric nanocomposites has been developed from a soft elastomer poly(glycerol sebacate, PGS) and nanoparticles of Bioglass®. The new nanocomposites have been characterised in terms of materials science and evaluated for their potential clinical applications as cell delivery vehicles and cardiac support devices in the heart patch strategy. The addition of alkaline Bioglass® effectively counteracts the acidity caused by the degradation of PGS without severely compromising the compliance of PGS. As a result, the newly developed PGS–nanoBioglass (<5 wt%) composites have a greatly improved biocompatibility, compared to PGS, and remain mechanically compatible with heart muscle. The interaction between PGS and Bioglass® and the reinforcement of the PGS polymer network by the nanoBioglass® particles have also been explored in depth.


Dental Materials | 2012

Use of NIR light and upconversion phosphors in light-curable polymers

Alexander Stepuk; Dirk Mohn; Robert N. Grass; Matthias Zehnder; Karl Krämer; Fabienne Pellé; Alban Ferrier; Wendelin J. Stark

OBJECTIVE Light-curable polymers are commonly used in restorative surgery, prosthodontics and surgical procedures. Despite the fact of wide application, there are clinical problems due to limitations of blue light penetration: application is restricted to defects exposed to the light source, layered filling of defect is required. METHODS Combining photo-activation and up conversion allows efficient polymer hardening by deep penetrating near-infrared (NIR) light. The prerequisite 450 nm blue light to polymerize dental resins could be achieved by filler particles, which absorb the incident NIR irradiation and convert it into visible light. RESULTS The on spot generated blue light results in uniform polymer hardening. Composite samples of 5mm thickness were cured two times faster than pure polymer cured by blue light (30 and 60 s, respectively). Overall degree of monomer conversion resulted in higher values of more than 40%. The enhanced transmission of NIR light was confirmed by optical analysis of dentin and enamel. The NIR transmittance surge in the 800-1200 nm window could improve sealing of complex and deep caries lesions. SIGNIFICANCE We demonstrate faster curing and an improved degree of polymerization by using upconversion filler particles as multiple light emission centers. This study represents an alternative approach in curing dental resins by NIR source.


Dental Materials | 2014

Functionalizing a dentin bonding resin to become bioactive

Tobias T. Tauböck; Matthias Zehnder; Thomas Schweizer; Wendelin J. Stark; Thomas Attin; Dirk Mohn

OBJECTIVES To investigate chemo-mechanical effects of incorporating alkaline bioactive glass nanoparticles into a light-curable dental resin matrix. METHODS An unfilled Bis-GMA/TEGDMA material was infiltrated with up to 20 wt% of ultrafine SiO2-Na2O-CaO-P2O5-Bi2O3 particles. The unfilled and filled resins were investigated regarding their viscosity before setting and compared to commercially available materials. Set specimens were immersed for 21 days in phosphate buffered saline at 37°C. Water uptake, pH, Knoop hardness, and degree of conversion of freshly polymerized and stored samples were investigated. Resin surfaces were viewed and mapped in a scanning electron microscope for the formation of calcium phosphate (Ca/P) precipitates. In addition, Raman spectroscopy was performed. Numeric values were statistically compared (p<0.01). RESULTS Viscosity increased with particle loading, but remained below that of a flowable dental composite material. Water uptake into and pH induction from the polymerized samples also increased with particle loading (p<0.01). The addition of 20 wt% nanoparticles had no significant influence on microhardness, yet it slightly (p<0.01) increased the degree of conversion after 21 days. Ca/P precipitates formed on specimens filled with 20 wt% of the particles, while they were scarce on counterparts loaded with 10 wt%, and absent on unfilled resin surfaces. SIGNIFICANCE The results of the current study show that a Bis-GMA-based resin can be functionalized using alkaline nanoparticles. A material with bioactive properties and similar hardness as the unfilled resin was obtained by incorporating 20wt% of ultrafine SiO2-Na2O-CaO-P2O5-Bi2O3 particles into the resin matrix.

Collaboration


Dive into the Dirk Mohn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldo R. Boccaccini

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ipsita Roy

University of Westminster

View shared research outputs
Top Co-Authors

Avatar

Jonathan C. Knowles

UCL Eastman Dental Institute

View shared research outputs
Top Co-Authors

Avatar

Vehid Salih

Plymouth State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge