Dirk Pette
University of Konstanz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dirk Pette.
Microscopy Research and Technique | 2000
Dirk Pette; Robert S. Staron
Skeletal muscle is an extremely heterogeneous tissue composed of a variety of fast and slow fiber types and subtypes. Moreover, muscle fibers are versatile entities capable of adjusting their phenotypic properties in response to altered functional demands. Major differences between muscle fiber types relate to their myosin complement, i.e., isoforms of myosin light and heavy chains. Myosin heavy chain (MHC) isoforms appear to represent the most appropriate markers for fiber type delineation. On this basis, pure fiber types are characterized by the expression of a single MHC isoform, whereas hybrid fiber type express two or more MHC isoforms. Hybrid fibers bridge the gap between the pure fiber types. The fiber population of skeletal muscles, thus, encompasses a continuum of pure and hybrid fiber types. Under certain conditions, changes can be induced in MHC isoform expression heading in the direction of either fast‐to‐slow or slow‐to‐fast. Increased neuromuscular activity, mechanical loading, and hypothyroidism are conditions that induce fast‐to‐slow transitions, whereas reduced neuromuscular activity, mechanical unloading, and hyperthyroidism cause transitions in the slow‐to‐fast direction. Microsc. Res. Tech. 50:500–509, 2000.
International Review of Cytology-a Survey of Cell Biology | 1997
Dirk Pette; Robert S. Staron
Mammalian skeletal muscle is an extremely heterogeneous tissue, composed of a large variety of fiber types. These fibers, however, are not fixed units but represent highly versatile entities capable of responding to altered functional demands and a variety of signals by changing their phenotypic profiles. This adaptive responsiveness is the basis of fiber type transitions. The fiber population of a given muscle is in a dynamic state, constantly adjusting to the current conditions. The full range of adaptive ability spans fast to slow characteristics. However, it is now clear that fiber type transitions do not proceed in immediate jumps from one extreme to the other, but occur in a graded and orderly sequential manner. At the molecular level, the best examples of these stepwise transitions are myofibrillar protein isoform exchanges. For the myosin heavy chain, this entails a sequence going from the fastest (MHCIIb) to the slowest (MHCI) isoform, and vice-versa. Depending on the basal protein isoform profile and hence the position within the fast-slow spectrum, the adaptive ranges of different fibers vary. A simple transition scheme has emerged from the multitude of data collected on fiber type conversions under a variety of conditions.
Histochemistry and Cell Biology | 2001
Dirk Pette; Robert S. Staron
Abstract. Skeletal muscle is a complex, versatile tissue composed of a large variety of functionally diverse fiber types. The overall properties of a muscle largely result from a combination of the individual properties of its different fiber types and their proportions. Skeletal muscle fiber types, which can be delineated according to various parameters, for example, myofibrillar protein isoforms, metabolic enzyme profiles, and structural and contractile properties, are not fixed units but are capable of responding to altered functional demands and a variety of signals by changing their phenotypic profiles. This brief review summarizes our current understanding of the delineation of fiber types, modulations of their phenotypic profiles as induced under various conditions, and potential mechanisms involved in these transitions.
Pflügers Archiv: European Journal of Physiology | 1973
Dirk Pette; Margaret E. Smith; Hans W. Staudte; Gerta Vrbová
SummaryIntermittant long-term stimulation of fast rabbit muscles up to 28 days with a frequency pattern resembling that of a slow muscle (10 Imp/sec) led to a slowing of the time course of contraction already during the first week. There was an increase of tetanic tension as well. The observed rearrangement of activities of key enzymes of energy supplying metabolism was found to occur sequentially. Decreases of extramitochondrial enzymes of glycogenolysis (phosphorylase), glycolysis (triosephosphate dehydrogenase, lactate dehydrogenase) and energy rich phosphate transfer were found initially together with a decrease of mitochondrial glycerolphosphate dehydrogenase. The isozyme pattern of lactate dehydrogenase was changed. Large initial increases were found in enzymes involved in glucose phosphorylation (hexokinase) and fatty acid activation (palmitoyl-CoA synthetase). Later an increase of key enzymes of the citric acid cycle (citrate synthase) and fatty acid oxidation (3-hydroxyacyl-CoA dehydrogenase) as well as ketone body utilization (3-ketoacid-CoA transferase) could be shown.Histochemical staining and comparative activity determination of succinate dehydrogenase in single fibres revealed that the mosaic like fibre composition of the fast muscle was transformed into a more uniform population resembling that of a predominantly slow muscle.
Muscle & Nerve | 1999
Dirk Pette; Gerta Vrbová
The model of chronic low‐frequency stimulation for the study of muscle plasticity was developed over 30 years ago. This protocol leads to a transformation of fast, fatigable muscles toward slower, fatigue‐resistant ones. It involves qualitative and quantitative changes of all elements of the muscle fiber studied so far. The multitude of stimulation‐induced changes makes it possible to establish the full adaptive potential of skeletal muscle. Both functional and structural alterations are caused by orchestrated exchanges of fast protein isoforms with their slow counterparts, as well as by altered levels of expression. This remodeling of the muscle fiber encompasses the major, myofibrillar proteins, membrane‐bound and soluble proteins involved in Ca2+ dynamics, and mitochondrial and cytosolic enzymes of energy metabolism. Most transitions occur in a coordinated, time‐dependent manner and result from altered gene expression, including transcriptional and posttranscriptional processes. This review summarizes the advantages of chronic low‐frequency stimulation for studying activity‐induced changes in phenotype, and its potential for investigating regulatory mechanisms of gene expression. The potential clinical relevance or utility of the technique is also considered.
Histochemistry and Cell Biology | 1989
Angelika Termin; Robert S. Staron; Dirk Pette
SummaryCombined histochemical and biochemical analyses were performed on rat skeletal muscles in order to determine the myosin heavy chain patterns in specific fiber types. Four myosin heavy chain isoforms were separated by gradient polyacrylamide gel electrophoresis of extracts from single fibers and whole muscle homogenates. Their electrophoretic mobility increased in the order HCIIa, HCIIb, and HCI. HCIIa, HCIIb and HCI were present as unique isoforms in histochemically defined fiber types IIA, IIB and I, respectively. The isoforms HCI and HCIIa coexisted at variable ratios in type IC and IIC fibers. An additional fast myosin heavy chain isoform with an electrophoretic mobility between HCIIa and HCIIb was designated as HCIId because of its abundance in fast fibers of large diameter in the diaphragm. With the exception of slight differences in mATPase staining intensity after acid preincubation, these fibers were almost indistinguishable from type IIB fibers. In view of their specific myosin heavy chain composition (HCIId), these fibers were named type IID. In the extensor digitorum longus muscle, type IID fibers were of smaller size than type IIB and differed from the latter by higher NADH tetrazolium reductase activities. Circumstantial evidence suggests that type IID fibers are identical with the 2X fibers, previously described by Schiaffino et al. (1986).
Cell | 1997
Karen Steeghs; Ad A.G.M. Benders; Frank Oerlemans; Arnold de Haan; Arend Heerschap; W. Ruitenbeek; Carolina R. Jost; Jan van Deursen; Benjamin Perryman; Dirk Pette; M.L.P. Brückwilder; Jolande Koudijs; P. H. K. Jap; J.H. Veerkamp; Bé Wieringa
We have blocked creatine kinase (CK)-mediated phosphocreatine (PCr) -->/<-- ATP transphosphorylation in skeletal muscle by combining targeted mutations in the genes encoding mitochondrial and cytosolic CK in mice. Contrary to expectation, the PCr level was only marginally affected, but the compound was rendered metabolically inert. Mutant muscles in vivo showed significantly impaired tetanic force output, increased relaxation times, altered mitochondrial volume and location, and conspicuous tubular aggregates of sarcoplasmic reticulum membranes, as seen in myopathies with electrolyte disturbances. In depolarized myotubes cultured in vitro, CK absence influenced both the release and sequestration of Ca2+. Our data point to a direct link between the CK-PCr system and Ca2+-flux regulation during the excitation and relaxation phases of muscle contraction.
Pflügers Archiv: European Journal of Physiology | 1976
Dirk Pette; Werner Müller; Elmi Leisner; Gerta Vrbová
SummaryFast-twitch tibialis anterior and extensor digitorum longus rabbit muscles were subjected to long-term intermittent (8 h daily) or continuous (24 h daily) indirect stimulation with a frequency pattern resembling that of a slow motoneuron.Increases in time to peak of isometric twitch contraction were observed without parallel changes in the pattern of myosin light chains or alterations in the distribution of slow and fast fibres as discernible by the histochemical ATPase reaction. However, changes in the fibre population and in the myosin light chain pattern were observed after intermittent stimulation periods exceeding 40 days or continuous stimulation periods longer than 20 days. Under these conditions even higher increases were found in contraction time. In one animal a complete change in fibre population was observed. In this case myosin light chains of the slow (LCS1, LCS2) and of the fast type (LCf1) were obviously synthetized simultaneously within the same fibre. Early changes in the enzyme activity pattern of energy metabolism indicated a conversion of the fibres including their mitochondrial population. These changes and the earlier reported changes in the sarcoplasmic reticulum are probably responsible for the early changes in contractile properties which occur before the transformation of the myosin.
Histochemistry and Cell Biology | 1986
Robert S. Staron; Dirk Pette
SummaryCombined histochemical and biochemical analyses were performed on single fibers of rabbit soleus muscle. Histochemically, four fiber types (I, IC, IIC, IIA) were defined. Of these, types I and IIA were separate, histochemically homogeneous groups. A heterogeneous C fiber population exhibited a continuum of staining intensities between types I and IIA. Microelectrophoretic analyses of specific, histochemically defined fibers revealed that type I fibers contained exclusively HCI, whereas type IIA fibers contained only HCIIa. The C fibers were characterized by the coexistence of both heavy chains in varying ratios, type HC with a predominance of HCI and type IIC with a predominance of HCIIa. A direct correlation existed between the myosin heavy chain composition and the histochemical mATPase staining and was especially evident in the C fiber population with its variable HCI/HCIIa ratio. This correlation did not apply to the myosin light chain complement.
Pflügers Archiv: European Journal of Physiology | 1984
H. J. Green; Gary A. Klug; Heinz Reichmann; Udo Seedorf; Walter Wiehrer; Dirk Pette
Effects of a long-term, high intensity training program upon histochemically assessed myofibrillar actomyosin ATPase, myosin composition, peptide pattern of sarcoplasmic reticulum (SR), and parvalbumin content were analysed in muscles from the same rats which were used in a previous study (Green et al. 1983). Following 15 weeks of extreme training, an increase in type I and type IIA fibres and a decrease in type IIB fibres occurred both in plantaris and extensor digitorum longus (EDL) muscles. In the deep portion of vastus lateralis (VLD), there was a pronounced increase from 10±5% to 27±11% in type I fibres. No type I fibres were detected in the superficial portion of vastus lateralis (VLS) both in control and trained animals. An increase in slow type myosin light chains accompanied the histochemically observed fibre type transition in VLD. Changes in the peptide pattern of SR occurred both in VLS and VLD and suggested a complete transition from type IIB to IIA in VLS and from type IIA to I in VLD. A complete type IIA to I transition in the VLD was also suggested by the failure to detect parvalbumin in this muscle after 15 weeks of training. Changes in parvalbumin content and SR tended to precede the transitions in the myosin light chains. Obviously, high intensity endurance training is capable of transforming specific characteristics of muscle fibres beyond the commonly observed changes in the enzyme activity pattern of energy metabolism. The time courses of the various changes which are similar to those in chronic nerve stimulation experiments, indicate that various functional systems of the muscle fibre do not change simultaneously.