Dirk Pflugmacher
Humboldt University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dirk Pflugmacher.
IEEE Transactions on Geoscience and Remote Sensing | 2006
Warren B. Cohen; Thomas K. Maiersperger; David P. Turner; William D. Ritts; Dirk Pflugmacher; Robert E. Kennedy; Alan Kirschbaum; Steven W. Running; Marcos Heil Costa; Stith T. Gower
Global maps of land cover and leaf area index (LAI) derived from the Moderate Resolution Imaging Spectrometer (MODIS) reflectance data are an important resource in studies of global change, but errors in these must be characterized and well understood. Product validation requires careful scaling from ground and related measurements to a grain commensurate with MODIS products. We present an updated BigFoot project protocol for developing 25-m validation data layers over 49-km2 study areas. Results from comparisons of MODIS and BigFoot land cover and LAI products at nine contrasting sites are reported. In terms of proportional coverage, MODIS and BigFoot land cover were in close agreement at six sites. The largest differences were at low tree cover evergreen needleleaf sites and at an Arctic tundra site where the MODIS product overestimated woody cover proportions. At low leaf biomass sites there was reasonable agreement between MODIS and BigFoot LAI products, but there was not a particular MODIS LAI algorithm pathway that consistently compared most favorably. At high leaf biomass sites, MODIS LAI was generally overpredicted by a significant amount. For evergreen needleleaf sites, LAI seasonality was exaggerated by MODIS. Our results suggest incremental improvement from Collection 3 to Collection 4 MODIS products, with some remaining problems that need to be addressed
Frontiers in Ecology and the Environment | 2014
Robert E. Kennedy; Serge Andréfouët; Warren B. Cohen; Cristina Gómez; Patrick Griffiths; Martin Hais; Sean P. Healey; Eileen H. Helmer; Patrick Hostert; Mitchell Lyons; Garrett W. Meigs; Dirk Pflugmacher; Stuart R. Phinn; Scott L. Powell; Peter Scarth; Susmita Sen; Todd A. Schroeder; Annemarie Schneider; Ruth Sonnenschein; James E. Vogelmann; Michael A. Wulder; Zhe Zhu
When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more subtle processes of interest to ecologists. Recent technical advances have led to a fundamental shift toward an ecological view of change. Although this conceptual shift began with coarser-scale global imagery, it has now reached users of Landsat imagery, since these datasets have temporal and spatial characteristics appropriate to many ecological questions. We argue that this ecologically relevant perspective of change allows the novel characterization of important dynamic processes, including disturbances, longterm trends, cyclical functions, and feedbacks, and that these improvements are already facilitating our understanding of critical driving forces, such as climate change, ecological interactions, and economic pressures.
Remote Sensing | 2013
Cornelius Senf; Dirk Pflugmacher; Sebastian van der Linden; Patrick Hostert
We developed and evaluated a new approach for mapping rubber plantations and natural forests in one of Southeast Asia’s biodiversity hot spots, Xishuangbanna in China. We used a one-year annual time series of Moderate Resolution Imaging Spectroradiometer (MODIS), Enhanced Vegetation Index (EVI) and short-wave infrared (SWIR) reflectance data to develop phenological metrics. These phenological metrics were used to classify rubber plantations and forests with the Random Forest classification algorithm. We evaluated which key phenological characteristics were important to discriminate rubber plantations and natural forests by estimating the influence of each metric on the classification accuracy. As a benchmark, we compared the best classification with a classification based on the full, fitted time series data. Overall classification accuracies derived from EVI and SWIR time series alone were 64.4% and 67.9%, respectively. Combining the phenological metrics from EVI and SWIR time series improved the accuracy to 73.5%. Using the full, smoothed time series data instead of metrics derived from the time series improved the overall accuracy only slightly (1.3%), indicating that the phenological metrics were sufficient to explain the seasonal changes captured by the MODIS time series. The results demonstrate a promising utility of phenological metrics for mapping and monitoring rubber expansion with MODIS.
Ecosystems | 2008
Sean P. Healey; Warren B. Cohen; Thomas A. Spies; Melinda Moeur; Dirk Pflugmacher; M. German Whitley; Michael A. Lefsky
Interest in preserving older forests at the landscape level has increased in many regions, including the Pacific Northwest of the United States. The Northwest Forest Plan (NWFP) of 1994 initiated a significant reduction in the harvesting of older forests on federal land. We used historical satellite imagery to assess the effect of this reduction in relation to: past harvest rates, management of non-federal forests, and the growing role of fire. Harvest rates in non-federal large-diameter forests (LDF) either decreased or remained stable at relatively high rates following the NWFP, meaning that harvest reductions on federal forests, which cover half of the region, resulted in a significant regional drop in the loss of LDF to harvest. However, increased losses of LDF to fire outweighed reductions in LDF harvest across large areas of the region. Elevated fire levels in the western United States have been correlated to changing climatic conditions, and if recent fire patterns persist, preservation of older forests in dry ecosystems will depend upon practical and coordinated fire management across the landscape.
Journal of Applied Remote Sensing | 2007
Scott L. Powell; Dirk Pflugmacher; Alan Kirschbaum; Yunsuk Kim; Warren B. Cohen
Earth observation with Landsat and other moderate resolution sensors is a vital component of a wide variety of applications across disciplines. Despite the widespread success of the Landsat program, recent problems with Landsat 5 and Landsat 7 create uncertainty about the future of moderate resolution remote sensing. Several other Landsat-like sensors have demonstrated applicability in key fields of earth observation research and could potentially complement or replace Landsat. The objective of this paper is to review the range of applications of 5 satellite suites and their Landsat-like sensors: SPOT, IRS, CBERS, ASTER, and ALI. We give a brief overview of each sensor, and review the documented applications in several earth observation domains, including land cover classification, forests and woodlands, agriculture and rangelands, and urban. We conclude with suggestions for further research into the fields of cross-sensor comparison and multi-sensor fusion. This paper is significant because it provides the remote sensing community a concise synthesis of Landsat-like sensors and research demonstrating their capabilities. It is also timely because it provides a framework for evaluating the range of Landsat alternatives, and strategies for minimizing the impact of a possible Landsat data gap.
International Journal of Applied Earth Observation and Geoinformation | 2015
Philippe Rufin; Hannes Müller; Dirk Pflugmacher; Patrick Hostert
Abstract Monitoring changes in land use intensity of grazing systems in the Amazon is an important prerequisite to study the complex political and socio-economic forces driving Amazonian deforestation. Remote sensing offers the potential to map pasture vegetation over large areas, but mapping pasture conditions consistently through time is not a trivial task because of seasonal changes associated with phenology and data gaps from clouds and cloud shadows. In this study, we tested spectral-temporal metrics derived from intra-annual Landsat time series to distinguish between grass-dominated and woody pastures. The abundance of woody vegetation on pastures is an indicator for management intensity, since the duration and intensity of land use steer secondary succession rates, apart from climate and soil conditions. We used the developed Landsat-based metrics to analyze pasture intensity trajectories between 1985 and 2012 in Novo Progresso, Brazil, finding that woody vegetation cover generally decreased after four to ten years of grazing activity. Pastures established in the 80s and early 90s showed a higher fraction of woody vegetation during their initial land use history than pastures established in the early 2000s. Historic intensity trajectories suggested a trend towards more intensive land use in the last decade, which aligns well with regional environmental policies and market dynamics. This study demonstrates the potential of dense Landsat time series to monitor land-use intensification on Amazonian pastures.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2014
He Yin; Dirk Pflugmacher; Robert E. Kennedy; Damien Sulla-Menashe; Patrick Hostert
Mapping land use and land cover change (LULCC) over large areas at regular time intervals is a key requisite to improve our understanding of dynamic land systems. In this study, we developed and tested an automated approach for mapping LULCCs at annual time intervals using data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Our approach characterizes changes between land cover types based on annual time series of per-pixel land cover probabilities. We used the temporal segmentation algorithm MODTrendr to identify trends and changes in the probability time series that were associated with land cover/use conversions. Accuracy assessment revealed good performance of our approach (overall accuracy of 92.0%). The method detected conversions from forest to grassland with a users accuracy of 94.0 ± 2.0% and a producers accuracy of 95.6 ± 1.6%. Conversions between cropland and grassland were detected with a users and a producers accuracy of 65.8 ± 4.8% and 72.2 ± 9.2%, respectively. We here present for the first time an approach that combines probabilities derived from machine learning (random forest classification) with time-series-based analysis (MODTrendr) for land cover/use change analysis at MODIS scale.
Isprs Journal of Photogrammetry and Remote Sensing | 2017
Cornelius Senf; Dirk Pflugmacher; Patrick Hostert; Rupert Seidl
Remote sensing is a key information source for improving the spatiotemporal understanding of forest ecosystem dynamics. Yet, the mapping and attribution of forest change remains challenging, particularly in areas where a number of interacting disturbance agents simultaneously affect forest development. The forest ecosystems of Central Europe are coupled human and natural systems, with natural and human disturbances affecting forests both individually and in combination. To better understand the complex forest disturbance dynamics in such systems, we utilize 32-year Landsat time series to map forest disturbances in five sites across Austria, the Czech Republic, Germany, Poland, and Slovakia. All sites consisted of a National Park and the surrounding forests, reflecting three management zones of different levels of human influence (managed, protected, strictly protected). This allowed for a comparison of spectral, temporal, and spatial disturbance patterns across a gradient from natural to coupled human and natural disturbances. Disturbance maps achieved overall accuracies ranging from 81% to 93%. Disturbance patches were generally small, with 95% of the disturbances being smaller than 10 ha. Disturbance rates ranged from 0.29% yr-1 to 0.95% yr-1, and differed substantially among management zones and study sites. Natural disturbances in strictly protected areas were longer in duration (median of 8 years) and slightly less variable in magnitude compared to human-dominated disturbances in managed forests (median duration of 1 year). However, temporal dynamics between natural and human-dominated disturbances showed strong synchrony, suggesting that disturbance peaks are driven by natural events affecting managed and unmanaged areas simultaneously. Our study demonstrates the potential of remote sensing for mapping forest disturbances in coupled human and natural systems, such as the forests of Central Europe. Yet, we also highlight the complexity of such systems in terms of agent attribution, as many natural disturbances are modified by management responding to them outside protected areas.
Landscape Ecology | 2017
Cornelius Senf; Elizabeth M. Campbell; Dirk Pflugmacher; Michael A. Wulder; Patrick Hostert
ContextForest insect outbreaks are influenced by ecological processes operating at multiple spatial scales, including host-insect interactions within stands and across landscapes that are modified by regional-scale variations in climate. These drivers of outbreak dynamics are not well understood for the western spruce budworm, a defoliator that is native to forests of western North America.ObjectivesOur aim was to assess how processes across multiple spatial scales drive western spruce budworm outbreak dynamics. Our objective was to assess the relative importance and influence of a set of factors covering the stand, landscape, and regional scales for explaining spatiotemporal outbreak patterns in British Columbia, Canada.MethodsWe used generalized linear mixed effect models within a multi-model interference framework to relate annual budworm infestation mapped from Landsat time series (1996–2012) to sets of stand-, landscape-, and regional-scale factors derived from forest inventory data, GIS analyses, and climate models.ResultsOutbreak patterns were explained well by our model (R2xa0=xa093%). The most important predictors of infestation probability were the proximity to infestations in the previous year, landscape-scale host abundance, and dry autumn conditions. While stand characteristics were overall less important predictors, we did find infestations were more likely amongst pure Douglas-fir stands with low site indices and high crown closure.ConclusionsOur findings add to growing empirical evidence that insect outbreak dynamics are driven by multi-scaled processes. Forest management planning to mitigate the impacts of budwormxa0outbreaks should thus consider landscape- and regional-scale factors in addition to stand-scale factors.
Archive | 2015
Patrick Hostert; Patrick Griffiths; Sebastian van der Linden; Dirk Pflugmacher
Dense time series of optical remote sensing data have long been the domain of broad-scale sensors with daily near-global coverage, such as the Advanced Very High Resolution Radiometer (AVHRR), the Medium Resolution Imaging Spectrometer (MERIS), the Moderate Resolution Imaging Spectrometer (MODIS) or the Satellite Pour l’Observation de la Terre (SPOT) VEGETATION. More recently, satellite data suitable for fine-scale analyses are becoming attractive for time series approaches. The major reasons for this development are the opening of the United States Geological Survey (USGS) Landsat archive along with a standardized geometric pre-processing including terrain correction. Based on such standardized products, tools for automated atmospheric correction and cloud/cloud shadow masking advanced the capabilities to handle cloud-contamination effectively. Finally, advances in information technology for mass data processing today allow analysing thousands of satellite images with comparatively little effort. Based on these major advancements, time series analyses have become feasible for solving questions across different research domains, while the focus here is on land systems. While early studies focused on better characterising forested ecosystems, now more complex ecosystem regimes, such as shrubland or agricultural system dynamics, come into focus. Despite the evolution of a wealth of novel time series-based applications, coherent analysis schemes and good practice guidelines are scarce. This chapter accordingly strives to structure the different approaches with a focus on potential applications or user needs. We end with an outlook on forthcoming sensor constellations that will greatly advance our opportunities concerning time series analyses.