Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Redecker is active.

Publication


Featured researches published by Dirk Redecker.


Mycorrhiza | 2013

An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota)

Dirk Redecker; Arthur Schüßler; Herbert Stockinger; Sidney L. Stürmer; Joseph B. Morton; Christopher Walker

The publication of a large number of taxon names at all levels within the arbuscular mycorrhizal fungi (Glomeromycota) has resulted in conflicting systematic schemes and generated considerable confusion among biologists working with these important plant symbionts. A group of biologists with more than a century of collective experience in the systematics of Glomeromycota examined all available molecular–phylogenetic evidence within the framework of phylogenetic hypotheses, incorporating morphological characters when they were congruent. This study is the outcome, wherein the classification of Glomeromycota is revised by rejecting some new names on the grounds that they are founded in error and by synonymizing others that, while validly published, are not evidence-based. The proposed “consensus” will provide a framework for additional original research aimed at clarifying the evolutionary history of this important group of symbiotic fungi.


Nature Communications | 2017

Soil networks become more connected and take up more carbon as nature restoration progresses

Elly Morriën; S. Emilia Hannula; L. Basten Snoek; Nico R. Helmsing; Hans Zweers; Mattias de Hollander; Raquel Luján Soto; Marie-Lara Bouffaud; Marc Buée; W.J. Dimmers; Henk Duyts; Stefan Geisen; Mariangela Girlanda; Robert I. Griffiths; Helene Bracht Jørgensen; John Jensen; Pierre Plassart; Dirk Redecker; Rüdiger M. Schmelz; Olaf Schmidt; Bruce C. Thomson; Emilie Tisserant; Stéphane Uroz; Anne Winding; Mark J. Bailey; Michael Bonkowski; J.H. Faber; Francis Martin; Philippe Lemanceau; Wietse de Boer

Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered.


Ecology | 2011

Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park

Ylva Lekberg; James F. Meadow; Jason R. Rohr; Dirk Redecker; Catherine A. Zabinski

The relative importance of dispersal and niche restrictions remains a controversial topic in community ecology, especially for microorganisms that are often assumed to be ubiquitous. We investigated the impact of these factors for the community assembly of the root-symbiont arbuscular mycorrhizal fungi (AMF) by sampling roots from geothermal and nonthermal grasslands in Yellowstone National Park (YNP), followed by sequencing and RFLP of AMF ribosomal DNA. With the exception of an apparent generalist RFLP type closely related to Glomus intraradices, a distance-based redundancy analysis indicated that the AMF community composition correlated with soil pH or pH-driven changes in soil chemistry. This was unexpected, given the large differences in soil temperature and plant community composition between the geothermal and nonthermal grasslands. RFLP types were found in either the acidic geothermal grasslands or in the neutral to alkaline grasslands, one of which was geothermal. The direct effect of the soil chemical environment on the distribution of two AMF morphospecies isolated from acidic geothermal grasslands was supported in a controlled greenhouse experiment. Paraglomus occultum and Scutellospora pellucida were more beneficial to plants and formed significantly more spores when grown in acidic than in alkaline soil. Distance among grasslands, used as an estimate of dispersal limitations, was not a significant predictor of AMF community similarity within YNP, and most fungal taxa may be part of a metacommunity. The isolation of several viable AMF taxa from bison feces indicates that wide-ranging bison could be a vector for at least some RFLP types among grasslands within YNP. In support of classical niche theory and the Baas-Becking hypothesis, our results suggest that AMF are not limited by dispersal at the scale of YNP, but that the soil environment appears to be the primary factor affecting community composition and distribution.


Critical Reviews in Plant Sciences | 2015

Inorganic Nitrogen Uptake and Transport in Beneficial Plant Root-Microbe Interactions

Pierre Emmanuel Courty; Penelope M. C. Smith; Sally Koegel; Dirk Redecker; Daniel Wipf

Arbuscular mycorrhiza (AM), ectomycorrhiza (ECM) and nitrogen (N) fixation through rhizobia symbioses (RS) play a critical role for plant nutrient use efficiency in natural ecosystems, usually characterized by nutrient limitation, especially regarding nitrogen and phosphate. Substantial evidence has accumulated about how the rational use of microsymbionts’ properties should significantly contribute to decreasing fertilizer and pesticide use in agriculture and forestry. Understanding the mechanisms underlying high N use efficiency by mycorrhizal/rhizobial plants and carbon allocation in a context of mutualistic biotrophic interactions is critical for managing both croplands and forests while taking care of the ecosystem services rendered by microbial symbionts. Availability, uptake and exchange of nutrients in biotrophic interactions drive plant growth and modulate biomass allocation, and these parameters are central to plant yield, a major outcome in the context of high biomass production. To unravel the symbiotic N “transportome” blueprint from various host plant combinations, it is critical to facilitate the first steps favoring the manipulation of crops toward greater nitrogen use efficiency and mycorrhizal or rhizobial ability. The present review addresses current knowledge on inorganic N transport in mycorrhizal/rhizobial symbiosis.


Mycorrhiza | 2012

Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers

Zuzana Sýkorová; Boris Börstler; Soňa Zvolenská; Judith Fehrer; Milan Gryndler; Miroslav Vosátka; Dirk Redecker

During the last decade, the application of arbuscular mycorrhizal fungi (AMF) as bioenhancers has increased significantly. However, until now, it has been difficult to verify the inoculation success in terms of fungal symbiont establishment in roots of inoculated plants because specific fungal strains could not be detected within colonized roots. Using mitochondrial large subunit ribosomal DNA, we show that Rhizophagus irregularis (formerly known as Glomus intraradices) isolate BEG140 consists of two different haplotypes. We developed nested PCR assays to specifically trace each of the two haplotypes in the roots of Phalaris arundinacea from a field experiment in a spoil bank of a former coal mine, where BEG140 was used as inoculant. We revealed that despite the relatively high diversity of native R. irregularis strains, R. irregularis BEG140 survived and proliferated successfully in the field experiment and was found significantly more often in the inoculated than control plots. This work is the first one to show tracing of an inoculated AMF isolate in the roots of target plants and to verify its survival and propagation in the field. These results will have implications for basic research on the ecology of AMF at the intraspecific level as well as for commercial users of mycorrhizal inoculation.


PLOS ONE | 2014

The Largest Subunit of RNA Polymerase II as a New Marker Gene to Study Assemblages of Arbuscular Mycorrhizal Fungi in the Field

Herbert Stockinger; Marine Peyret-Guzzon; Sally Koegel; Marie-Lara Bouffaud; Dirk Redecker

Due to the potential of arbuscular mycorrhizal fungi (AMF, Glomeromycota) to improve plant growth and soil quality, the influence of agricultural practice on their diversity continues to be an important research question. Up to now studies of community diversity in AMF have exclusively been based on nuclear ribosomal gene regions, which in AMF show high intra-organism polymorphism, seriously complicating interpretation of these data. We designed specific PCR primers for 454 sequencing of a region of the largest subunit of RNA polymerase II gene, and established a new reference dataset comprising all major AMF lineages. This gene is known to be monomorphic within fungal isolates but shows an excellent barcode gap between species. We designed a primer set to amplify all known lineages of AMF and demonstrated its applicability in combination with high-throughput sequencing in a long-term tillage experiment. The PCR primers showed a specificity of 99.94% for glomeromycotan sequences. We found evidence of significant shifts of the AMF communities caused by soil management and showed that tillage effects on different AMF taxa are clearly more complex than previously thought. The high resolving power of high-throughput sequencing highlights the need for quantitative measurements to efficiently detect these effects.


Agronomy for Sustainable Development | 2015

Arbuscular mycorrhiza symbiosis in viticulture: a review

Sophie Trouvelot; Laurent Bonneau; Dirk Redecker; Diederik van Tuinen; Marielle Adrian; Daniel Wipf

Viticulture is a major worldwide economic sector with a vine area of 7.52xa0millionxa0ha, wine production of 288xa0Mhl, and wine exports of 26xa0billionxa0euros. Nevertheless, viticulture has to adapt to new challenges of pest management, such as pesticide reduction, and climate change, such as increasing droughts. Viticulture adaptation can benefit from arbuscular mycorrhiza, a plant–fungus symbiosis. Here, we review the ecosystemic services of arbuscular mycorrhiza for grapevine production. The major points are the following: (1) arbuscular mycorrhiza fungi increase grapevine growth and nutrition by a better access to soil nutrients and by activating the regulation of plant transport proteins for phosphorus (P), nitrogen (N), and other elements. (2) Arbuscular mycorrhiza fungi increase the tolerance to abiotic stresses such as water stress, soil salinity, iron chlorosis, and heavy metal toxicity. (3) Arbuscular mycorrhiza fungi protect against biotic stresses such as root diseases. (4) Arbuscular mycorrhiza fungi produce glycoproteins and a dense hyphal network that increases soil stability and save soil nutrients up to 14xa0% of the grape production income. (5) P fertilisation reduces mycorhization. (6) Using herbaceous plants as cover crops favors arbuscular mycorrhiza fungi.


New Phytologist | 2017

Glomeromycotina: what is a species and why should we care?

Thomas D. Bruns; Nicolas Corradi; Dirk Redecker; John W. Taylor; Maarja Öpik

A workshop at the recent International Conference on Mycorrhiza was focused on species recognition in Glomeromycotina and parts of their basic biology that define species. The workshop was motivated by the paradigm-shifting evidence derived from genomic data for sex and for the lack of heterokaryosis, and by published exchanges in Science that were based on different species concepts and have led to differing views of dispersal and endemism in these fungi. Although a lively discussion ensued, there was general agreement that species recognition in the group is in need of more attention, and that many basic assumptions about the biology of these important fungi including sexual or clonal reproduction, similarity or dissimilarity of nuclei within an individual, and species boundaries need to be re-examined and scrutinized with current techniques.


Organisms Diversity & Evolution | 2013

A multigene phylogeny demonstrates that Tuber aestivum and Tuber uncinatum are conspecific

Virginie Molinier; Gérard Chevalier; Armelle Gollotte; Daniel Wipf; Dirk Redecker

For almost 2 centuries it has been disputed whether Tuber aestivum and Tuber uncinatum constitute two different species of truffles. Molecular markers have been applied previously to contribute to resolving this question, coming to different conclusions. In this study, we address this question by analyzing the genetic structure of truffles assigned to either of the two putative species from a geographically broad sampling across Europe. We used an approach involving multigene phylogenies and coalescent analyses of nine regions from five genes. All tests conducted supported the conspecificity of Tuber aestivum and Tuber uncinatum.


Mycorrhiza | 2017

Arbuscular mycorrhizal fungal community differences among European long-term observatories

Marie-Lara Bouffaud; C. Bragalini; A. Berruti; M. Peyret-Guzzon; S. Voyron; Herbert Stockinger; D. van Tuinen; E. Lumini; Daniel Wipf; Pierre Plassart; Philippe Lemanceau; V. Bianciotto; Dirk Redecker; Mariangela Girlanda

Arbuscular mycorrhizal fungal (AMF) communities have been demonstrated to respond to a variety of biotic and abiotic factors, including various aspects of land management. Numerous studies have specifically addressed the impact of land use on AMF communities, but usually have been confined to one or a few sites. In this study, soil AMF assemblages were described in four different long-term observatories (LTOs) across Europe, each of which included a site-specific high-intensity and a low-intensity land use. AMF communities were characterized on the basis of 454 sequencing of the internal transcribed spacer 2 (ITS2) rDNA region. The primary goals of this study were (i) to determine the main factors that shape AMF communities in differentially managed sites in Europe and (ii) to identify individual AMF taxa or combinations of taxa suitable for use as biomarkers of land use intensification. AMF communities were distinct among LTOs, and we detected significant effects of management type and soil properties within the sites, but not across all sites. Similarly, indicator species were identified for specific LTOs and land use types but not universally for high- or low-intensity land uses. Different subsets of soil properties, including several chemical and physical variables, were found to be able to explain an important fraction of AMF community variation alone or together with other examined factors in most sites. The important factors were different from those for other microorganisms studied in the same sites, highlighting particularities of AMF biology.

Collaboration


Dive into the Dirk Redecker's collaboration.

Top Co-Authors

Avatar

Daniel Wipf

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar

Marie-Lara Bouffaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Philippe Lemanceau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pierre Plassart

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel E. Creamer

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Diederik van Tuinen

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Buée

University of Lorraine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge