Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Riemann is active.

Publication


Featured researches published by Dirk Riemann.


The Climate of the Mediterranean Region | 2012

A Review of 2000 Years of Paleoclimatic Evidence in the Mediterranean

Jürg Luterbacher; Ricardo García-Herrera; Sena Akçer-Ön; Rob Allan; Maria-Carmen Alvarez-Castro; Gerardo Benito; Jonathan Booth; Ulf Büntgen; Namik Cagatay; Daniele Colombaroli; Basil A. S. Davis; Jan Esper; Thomas Felis; Dominik Fleitmann; David Frank; David Gallego; E. García-Bustamante; Ruediger Glaser; Fidel González-Rouco; Hugues Goosse; Thorsten Kiefer; Mark G. Macklin; Sturt W. Manning; Paolo Montagna; Louise Newman; Mitchell J. Power; Volker Rath; Pedro Ribera; Dirk Riemann; Neil Roberts

The integration of climate information from instrumental data and documentary and natural archives; evidence of past human activity derived from historical, paleoecological, and archaeological records; and new climate modeling techniques promises major breakthroughs for our understanding of climate sensitivity, ecological processes, environmental response, and human impact. In this chapter, we review the availability and potential of instrumental data, less well-known written records, and terrestrial and marine natural proxy archives for climate in the Mediterranean region over the last 2000 years. We highlight the need to integrate these different proxy archives and the importance for multiproxy studies of disentangling complex relationships among climate, sea-level changes, fire, vegetation, and forests, as well as land use and other human impacts. Focusing on dating uncertainties, we address seasonality effects and other uncertainties in the different proxy records. We describe known and anticipated challenges posed by integrating multiple diverse proxies in high-resolution climate-variation reconstructions, including proxy limitations to robust reconstruction of the natural range of climate variability and problems specific to temporal scales from interannual to multicentennial. Finally, we highlight the potential of paleo models to contribute to climate reconstructions in the Mediterranean, by narrowing the range of climate-sensitivity estimates and by assimilating multiple proxies.


Climatic Change | 2014

The year-long unprecedented European heat and drought of 1540 – a worst case

Oliver Wetter; Christian Pfister; Johannes P. Werner; Eduardo Zorita; Sebastian Wagner; Sonia I. Seneviratne; Jürgen Herget; Uwe Grünewald; Jürg Luterbacher; Maria João Alcoforado; Mariano Barriendos; Ursula Bieber; Rudolf Brázdil; Karl H. Burmeister; Chantal Camenisch; Antonio Contino; Petr Dobrovolný; Rüdiger Glaser; Iso Himmelsbach; Andrea Kiss; Oldřich Kotyza; Thomas Labbé; Danuta Limanówka; Laurent Litzenburger; Øyvind Nordl; Kathleen Pribyl; Dag Retsö; Dirk Riemann; Christian Rohr; Werner Siegfried

The heat waves of 2003 in Western Europe and 2010 in Russia, commonly labelled as rare climatic anomalies outside of previous experience, are often taken as harbingers of more frequent extremes in the global warming-influenced future. However, a recent reconstruction of spring–summer temperatures for WE resulted in the likelihood of significantly higher temperatures in 1540. In order to check the plausibility of this result we investigated the severity of the 1540 drought by putting forward the argument of the known soil desiccation-temperature feedback. Based on more than 300 first-hand documentary weather report sources originating from an area of 2 to 3 million km2, we show that Europe was affected by an unprecedented 11-month-long Megadrought. The estimated number of precipitation days and precipitation amount for Central and Western Europe in 1540 is significantly lower than the 100-year minima of the instrumental measurement period for spring, summer and autumn. This result is supported by independent documentary evidence about extremely low river flows and Europe-wide wild-, forest- and settlement fires. We found that an event of this severity cannot be simulated by state-of-the-art climate models.


Climatic Change | 2015

Tree-rings and people – different views on the 1540 Megadrought. Reply to Büntgen et al. 2015

Christian Pfister; Oliver Wetter; Rudolf Brázdil; Petr Dobrovolný; Rüdiger Glaser; Jürg Luterbacher; Sonia I. Seneviratne; Eduardo Zorita; Maria João Alcoforado; Mariano Barriendos; Ursula Bieber; Karl H. Burmeister; Chantal Camenisch; Antonio Contino; Uwe Grünewald; Jürgen Herget; Iso Himmelsbach; Thomas Labbé; Danuta Limanówka; Laurent Litzenburger; Andrea Kiss; Oldřich Kotyza; Øyvind Nordli; Kathleen Pribyl; Dag Retsö; Dirk Riemann; Christian Rohr; Werner Siegfried; Jean-Laurent Spring; Johan Söderberg

Buntgen et al. (2015; hereinafter B15) present the result of new research which question the results of Wetter et al. 2014, (hereinafter W14) and Wetter et al. (2013, hereinafter W13)regarding European climate in 1540. B15 conclude from tree-ring evidence that the results based on documentary data of W14 probably overstated the intensity and duration of the 1540 drought event. W14 termed it Megadrought because of its extreme duration and spatial extent compared to other drought events in central Europe, although they note that the term is generally used for decadal rather than for single-year droughts (Seneviratne et al. 2012). We take the opportunity to recall the following issues. Firstly, when dealing with drought the complexity of this phenomenon should be kept in mind. Meteorological drought defined as a large negative precipitation anomaly during a certain period can trigger agricultural, hydrological, groundwater and socioeconomic droughts. Lloyd-Hughes (2013] and references cited herein) concluded that any workable objective definition of drought does not exist. To quantify droughts, various indices based on precipitation, temperature and evapotranspiration are used such as the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Z-index and PDSI. Their calculation depends on different periods (seasons, combination of months) and so different indices may classify the same drought episode differently (e.g. Brazdil et al.2014).


Archive | 2015

The Historical Time Frame (Past 1000 Years)

Tadeusz Niedźwiedź; Rüdiger Glaser; Daniel Hansson; Samuli Helama; Vladimir Klimenko; Ewa Łupikasza; Łukasz Małarzewski; Øyvind Nordli; Rajmund Przybylak; Dirk Riemann; Olga Solomina

This chapter summarises the climatic and environmental information that can be inferred from proxy archives of the Baltic Sea area during the past millennium (1000 years). The proxy archives mainly comprise tree-ring analyses together with historical documents on extreme weather events and weather-related disasters. In addition to the reconstructed climate, climatic conditions are simulated using a regional climate model covering the Baltic Sea area. The chapter focuses on three of the main climatic periods of the past millennium: the Medieval Warm Period (900–1350), the Transitional Period (1350–1550) and the Little Ice Age (1550–1850). During these main historical climatic periods, climatic conditions were not uniform. Shorter warm/cool and wet/dry fluctuations were observed depending on regional factors.


Climatic Change | 2014

Erratum to: The year-long unprecedented European heat and drought of 1540 – a worst case

Oliver Wetter; Christian Pfister; Johannes P. Werner; Eduardo Zorita; Sebastian Wagner; Sonia I. Seneviratne; Jürgen Herget; Uwe Grünewald; Jürg Luterbacher; Maria João Alcoforado; Mariano Barriendos; Ursula Bieber; Rudolf Brázdil; Karl H. Burmeister; Chantal Camenisch; Antonio Contino; Petr Dobrovolný; Rüdiger Glaser; Iso Himmelsbach; Andrea Kiss; Oldřich Kotyza; Thomas Labbé; Danuta Limanówka; Laurent Litzenburger; Øyvind Nordli; Kathleen Pribyl; Dag Retsö; Dirk Riemann; Christian Rohr; Werner Siegfried

Oliver Wetter & Christian Pfister & Johannes P. Werner & Eduardo Zorita & Sebastian Wagner & Sonia I. Seneviratne & Jurgen Herget & Uwe Grunewald & Jurg Luterbacher & Maria-Joao Alcoforado & Mariano Barriendos & Ursula Bieber & Rudolf Brazdil & Karl H. Burmeister & Chantal Camenisch & Antonio Contino & Petr Dobrovolný & Rudiger Glaser & Iso Himmelsbach & Andrea Kiss & Oldřich Kotyza & Thomas Labbe & Danuta Limanowka & Laurent Litzenburger & Oyvind Nordli & Kathleen Pribyl & Dag Retso & Dirk Riemann & Christian Rohr & Werner Siegfried & Johan Soderberg & Jean-Laurent Spring


Journal of Power Sources | 2005

Statistic analysis of operational influences on the cold start behaviour of PEM fuel cells

M. Oszcipok; Dirk Riemann; U. Kronenwett; M. Kreideweis; M. Zedda


Climatic Change | 2010

Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500

Petr Dobrovolný; Anders Moberg; Rudolf Brázdil; Christian Pfister; Rüdiger Glaser; Rob Wilson; Aryan van Engelen; Danuta Limanówka; Andrea Kiss; Monika Halíčková; Jarmila Macková; Dirk Riemann; Jürg Luterbacher; Reinhard Böhm


Climatic Change | 2010

The variability of European floods since AD 1500

Rüdiger Glaser; Dirk Riemann; Mariano Barriendos; Rudolf Brázdil; Chiara Bertolin; Dario Camuffo; Mathias Deutsch; Petr Dobrovolný; Aryan van Engelen; Silvia Enzi; Monika Halíčková; Sebastian Koenig; Oldřich Kotyza; Danuta Limanówka; Jarmila Macková; Mirca Sghedoni; Brice Martin; Iso Himmelsbach


Journal of Power Sources | 2006

Low temperature operation and influence parameters on the cold start ability of portable PEMFCs

M. Oszcipok; M. Zedda; Dirk Riemann; D. Geckeler


Journal of Quaternary Science | 2009

A thousand-year record of temperature variations for Germany and Central Europe based on documentary data†

Rüdiger Glaser; Dirk Riemann

Collaboration


Dive into the Dirk Riemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Kiss

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Øyvind Nordli

Norwegian Meteorological Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge