Dirk Saerens
Vrije Universiteit Brussel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dirk Saerens.
Veterinary Immunology and Immunopathology | 2009
Serge Muyldermans; Toya Nath Baral; V. Cortez Retamozzo; P. De Baetselier; E. De Genst; Jörg Kinne; Heinrich Leonhardt; Stefan Magez; V.K. Nguyen; Hilde Revets; Ulrich Rothbauer; Benoît Stijlemans; Sergei V. Tillib; Ulrich Wernery; Lode Wyns; Gh. Hassanzadeh-Ghassabeh; Dirk Saerens
It is well established that all camelids have unique antibodies circulating in their blood. Unlike antibodies from other species, these special antibodies are devoid of light chains and are composed of a heavy-chain homodimer. These so-called heavy-chain antibodies (HCAbs) are expressed after a V-D-J rearrangement and require dedicated constant gamma-genes. An immune response is raised in these so-called heavy-chain antibodies following classical immunization protocols. These HCAbs are easily purified from serum, and the antigen-binding fragment interacts with parts of the target that are less antigenic to conventional antibodies. Since the antigen-binding site of the dromedary HCAb is comprised in one single domain, referred to as variable domain of heavy chain of HCAb (VHH) or nanobody (Nb), we designed a strategy to clone the Nb repertoire of an immunized dromedary and to select the Nbs with specificity for our target antigens. The monoclonal Nbs are well produced in bacteria, are very stable and highly soluble, and bind their cognate antigen with high affinity and specificity. We have successfully developed recombinant Nbs for research purposes, as probe in biosensors, to diagnose infections, and to treat diseases like cancer or trypanosomosis.
Journal of Biological Chemistry | 2009
Cécile Vincke; Remy Loris; Dirk Saerens; Sergio Martínez-Rodríguez; Serge Muyldermans; Katja Conrath
Nanobodies, single-domain antigen-binding fragments of camelid-specific heavy-chain only antibodies offer special advantages in therapy over classic antibody fragments because of their smaller size, robustness, and preference to target unique epitopes. A Nanobody differs from a human heavy chain variable domain in about ten amino acids spread all over its surface, four hallmark Nanobody-specific amino acids in the framework-2 region (positions 42, 49, 50, and 52), and a longer third antigen-binding loop (H3) folding over this area. For therapeutic applications the camelid-specific amino acid sequences in the framework have to be mutated to their human heavy chain variable domain equivalent, i.e. humanized. We performed this humanization exercise with Nanobodies of the subfamily that represents close to 80% of all dromedary-derived Nanobodies and investigated the effects on antigen affinity, solubility, expression yield, and stability. It is demonstrated that the humanization of Nanobody-specific residues outside framework-2 are neutral to the Nanobody properties. Surprisingly, the Glu-49 → Gly and Arg-50 → Leu humanization of hallmark amino acids generates a single domain that is more stable though probably less soluble. The other framework-2 substitutions, Phe-42 → Val and Gly/Ala-52 → Trp, are detrimental for antigen affinity, due to a repositioning of the H3 loop as shown by their crystal structures. These insights were used to identify a soluble, stable, well expressed universal humanized Nanobody scaffold that allows grafts of antigen-binding loops from other Nanobodies with transfer of the antigen specificity and affinity.
Current Opinion in Pharmacology | 2008
Dirk Saerens; Gholamreza Hassanzadeh Ghassabeh; Serge Muyldermans
Antibodies are large and complex molecules, with two identical parts that bind independently of each other onto the antigen and the third part of the molecule that dictates the effector function(s). To improve the therapeutic value of antibodies, protein-engineering endeavors reduced the size of the antigen-binding moiety to a single-domain unit. Occasionally, it was demonstrated that the single-domain antigen-binding derivatives of antibodies can have--on their own--an agonistic (or antagonistic) effect on their target. The small size and strict monomeric behavior, in combination with other biochemical properties such as high solubility and high specificity and affinity for the cognate antigen, make single-domain antibodies ideal to design novel man-made conjugates harnessed with innovative effector functions outside the reach of classical antibodies.
Sensors | 2008
Dirk Saerens; Lieven Huang; Kristien Bonroy; Serge Muyldermans
Todays proteomic analyses are generating increasing numbers of biomarkers, making it essential to possess highly specific probes able to recognize those targets. Antibodies are considered to be the first choice as molecular recognition units due to their target specificity and affinity, which make them excellent probes in biosensor development. However several problems such as difficult directional immobilization, unstable behavior, loss of specificity and steric hindrance, may arise from using these large molecules. Luckily, protein engineering techniques offer designed antibody formats suitable for biomarker analysis. Minimization strategies of antibodies into Fab fragments, scFv or even single-domain antibody fragments like VH, VL or VHHs are reviewed. Not only the size of the probe but also other issues like choice of immobilization tag, type of solid support and probe stability are of critical importance in assay development for biosensing. In this respect, multiple approaches to specifically orient and couple antibody fragments in a generic one-step procedure directly on a biosensor substrate are discussed.
Journal of Molecular Biology | 2008
Dirk Saerens; Katja Conrath; Jochen Govaert; Serge Muyldermans
Several antibody fragment engineering techniques aim at intrinsic stability enhancement, but are not applied in a truly generic way. Here, a strategy is proposed whereby consistent gain in stability is accomplished by introducing a specific disulfide bond between two opposite beta-strands in the hydrophobic core of the immunoglobulin heavy-chain variable domain of heavy-chain antibodies (Nanobody). Besides the rational design of a disulfide bond between residues 39 and 87, a Nanobody harboring an extra naturally occurring cystine between residues 54 and 78 was compared to an equivalent Nanobody without that cystine. Both novel disulfide cross-links were introduced in several Nanobodies in various combinations. Interestingly, only the extra naturally occurring cystine consistently increased the conformational and thermal stabilities of wild-type Nanobodies without affecting antigen binding.
The FASEB Journal | 2010
Issam Hmila; Dirk Saerens; Rahma Ben Abderrazek; Cécile Vincke; Naima Abidi; Zakaria Benlasfar; Jochen Govaert; Mohamed El Ayeb; Balkiss Bouhaouala-Zahar; Serge Muyldermans
Envenoming following scorpion sting is a common emergency in many parts of the world. Our aim was to ameliorate the current 100‐kDa horse plasma antivenom serum (PAS)‐derived Fab′2 to more quickly reach the highly diffusible scorpion toxins (7 kDa). We immunized dromedaries with toxins from Androctonus australis hector (Aah) scorpions and cloned the single‐domain antibody fragments or nanobodies (15 kDa) from their B cells. Nanobodies against AahI′ toxin (with AahII the most toxic compound of the venom) were retrieved from the libraries, and their AahI′ ‐toxin neutralization was monitored in mice. Remarkably, the NbAahI′ F12 fully protected mice against 100 LD50 of AahI′ administered intracerebroventricularly. Moreover, where PAS failed completely to neutralize 2 LD50 of crude venom injected subcutaneously, the designed bispecific NbF12‐10 against AahI′/AahII toxins succeeded in neutralizing 5 LD50. Finally, in a challenge assay in which mice were subcutaneously injected with a lethal dose of scorpion venom, the subsequent intravenous injection of 85 μg of NbF12‐10 protected all mice, even if the whole procedure was repeated 3 times. Furthermore, the NbF12‐10 remained fully protective when mice with severe signs of envenoming were treated a few minutes before the untreated mice died.—Hmila, I., Saerens, D., Ben Abderrazek, R., Vincke, C., Abidi, N., Benlasfar, Z., Govaert, J., El Ayeb, M., Bouhaouala‐Zahar, B., Muyldermans, S. A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB J. 24, 3479–3489 (2010). www.fasebj.org
Biochemistry | 2008
Pak-Ho Chan; Els Pardon; Linda Menzer; Erwin De Genst; Janet R. Kumita; John Christodoulou; Dirk Saerens; Alain Brans; Fabrice Bouillenne; David B. Archer; Carol V. Robinson; Serge Muyldermans; André Matagne; Christina Redfield; Lode Wyns; Christopher M. Dobson; Mireille Dumoulin
A single-domain fragment, cAb-HuL22, of a camelid heavy-chain antibody specific for the active site of human lysozyme has been generated, and its effects on the properties of the I56T and D67H amyloidogenic variants of human lysozyme, which are associated with a form of systemic amyloidosis, have been investigated by a wide range of biophysical techniques. Pulse-labeling hydrogen-deuterium exchange experiments monitored by mass spectrometry reveal that binding of the antibody fragment strongly inhibits the locally cooperative unfolding of the I56T and D67H variants and restores their global cooperativity to that characteristic of the wild-type protein. The antibody fragment was, however, not stable enough under the conditions used to explore its ability to perturb the aggregation behavior of the lysozyme amyloidogenic variants. We therefore engineered a more stable version of cAb-HuL22 by adding a disulfide bridge between the two beta-sheets in the hydrophobic core of the protein. The binding of this engineered antibody fragment to the amyloidogenic variants of lysozyme inhibited their aggregation into fibrils. These findings support the premise that the reduction in global cooperativity caused by the pathogenic mutations in the lysozyme gene is the determining feature underlying their amyloidogenicity. These observations indicate further that molecular targeting of enzyme active sites, and of protein binding sites in general, is an effective strategy for inhibiting or preventing the aberrant self-assembly process that is often a consequence of protein mutation and the origin of pathogenicity. Moreover, this work further demonstrates the unique properties of camelid single-domain antibody fragments as structural probes for studying the mechanism of aggregation and as potential inhibitors of fibril formation.
International Journal for Parasitology | 2009
Nynke Deckers; Dirk Saerens; Kirezi Kanobana; K Conrath; Bjorn Victor; Ulrich Wernery; Jozef Vercruysse; Serge Muyldermans; Pierre Dorny
Taenia solium cysticercosis is a major helminth zoonosis in developing countries. Pigs are the intermediate hosts mediating transmission of infection. Specific assays to diagnose living cysts in pigs are lacking. The monoclonal-based antigen detection ELISA is genus-specific and cross-reactions with Taenia hydatigena hamper the use of this test to screen pigs. We, therefore, aimed to introduce nanobodies, camelid-derived single-domain antibodies specific for T. solium cysticercosis, to develop unambiguous tests. Nanobodies were cloned following immunization of two dromedaries with T. solium antigen and eight T. solium-specific nanobodies were selected after phage display. Their binding characteristics and potential for the diagnosis of porcine cysticercosis were investigated. The nanobodies do not cross-react with T. hydatigena, Taenia saginata, Taenia crassiceps or Trichinella spiralis and were categorized into four epitope-binding groups. The target protein was identified as 14kDa diagnostic glycoprotein (Ts14), but the nanobodies also reacted with other proteins of the same family. Nanobodies were tested in a sandwich ELISA with cyst fluid, and one particular nanobody detected its cognate serum antigens in a species-specific inhibition ELISA. Considering their beneficial production and stability properties, these highly specific nanobodies constitute a promising tool to diagnose cysticercosis after further improvement of the sensitivity and future assay validation.
Journal of Biological Chemistry | 2012
Jochen Govaert; Mireille Pellis; Nick Deschacht; Cécile Vincke; Katja Conrath; Serge Muyldermans; Dirk Saerens
Background: The presence of cystines connecting antigen-binding loops in single domain antibodies is puzzling. Results: Cysteines forming such cystine are substituted, and the performance of functional antibody fragments is determined. Conclusion: An interloop disulfide bond stabilizes the domain and rigidifies the long third antigen-binding loop, leading to stronger antigen interaction. Significance: This beneficial effect explains in vivo antibody maturation favoring antibodies with an interloop disulfide bond. The antigen-binding fragment of functional heavy chain antibodies (HCAbs) in camelids comprises a single domain, named the variable domain of heavy chain of HCAbs (VHH). The VHH harbors remarkable amino acid substitutions in the framework region-2 to generate an antigen-binding domain that functions in the absence of a light chain partner. The substitutions provide a more hydrophilic, hence more soluble, character to the VHH but decrease the intrinsic stability of the domain. Here we investigate the functional role of an additional hallmark of dromedary VHHs, i.e. the extra disulfide bond between the first and third antigen-binding loops. After substituting the cysteines forming this interloop cystine by all 20 amino acids, we selected and characterized several VHHs that retain antigen binding capacity. Although VHH domains can function in the absence of an interloop disulfide bond, we demonstrate that its presence constitutes a net advantage. First, the disulfide bond stabilizes the domain and counteracts the destabilization by the framework region-2 hallmark amino acids. Second, the disulfide bond rigidifies the long third antigen-binding loop, leading to a stronger antigen interaction. This dual beneficial effect explains the in vivo antibody maturation process favoring VHH domains with an interloop disulfide bond.
Biochemical Journal | 2009
Rahma Ben Abderrazek; Issam Hmila; Cécile Vincke; Zakaria Benlasfar; Mireille Pellis; Hafedh Dabbek; Dirk Saerens; Mohamed El Ayeb; Serge Muyldermans; Balkiss Bouhaouala-Zahar
Scorpion venom, containing highly toxic, small polypeptides that diffuse rapidly within the patient, causes serious medical problems. Nanobodies, single-domain antigen-binding fragments derived from dromedary heavy-chain antibodies, have a size that closely matches that of scorpion toxins. Therefore these nanobodies might be developed into potent immunotherapeutics to treat scorpion envenoming. Multiple nanobodies of sub-nanomolar affinity to AahII, the most toxic polypeptide within the Androctonus australis hector venom, were isolated from a dromedary immunized with AahII. These nanobodies neutralize the lethal effect of AahII to various extents without clear correlation with the kinetic rate constants kon or koff, or the equilibrium dissociation constant, KD. One particular nanobody, referred to as NbAahII10, which targets a unique epitope on AahII, neutralizes 7 LD50 of this toxin in mice, corresponding to a neutralizing capacity of approx. 37000 LD50 of AahII/mg of nanobody. Such high neutralizing potency has never been reached before by any other monoclonal antibody fragment.