Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Seegert is active.

Publication


Featured researches published by Dirk Seegert.


Nature Genetics | 2004

Genetic variation in DLG5 is associated with inflammatory bowel disease

Monika Stoll; Brit Corneliussen; Christine M. Costello; Georg H. Waetzig; Bjorn Mellgard; W. Andreas Koch; Philip Rosenstiel; Mario Albrecht; Peter J. P. Croucher; Dirk Seegert; Susanna Nikolaus; Jochen Hampe; Thomas Lengauer; Stefan Pierrou; Ulrich R. Foelsch; Christopher G. Mathew; Maria Lagerstrom-Fermer; Stefan Schreiber

Crohn disease and ulcerative colitis are two subphenotypes of inflammatory bowel disease (IBD), a complex disorder resulting from gene-environment interaction. We refined our previously defined linkage region for IBD on chromosome 10q23 and used positional cloning to identify genetic variants in DLG5 associated with IBD. DLG5 encodes a scaffolding protein involved in the maintenance of epithelial integrity. We identified two distinct haplotypes with a replicable distortion in transmission (P = 0.000023 and P = 0.004 for association with IBD, P = 0.00012 and P = 0.04 for association with Crohn disease). One of the risk-associated DLG5 haplotypes is distinguished from the common haplotype by a nonsynonymous single-nucleotide polymorphism 113G→A, resulting in the amino acid substitution R30Q in the DUF622 domain of DLG5. This mutation probably impedes scaffolding of DLG5. We stratified the study sample according to the presence of risk-associated CARD15 variants to study potential gene-gene interaction. We found a significant difference in association of the 113A DLG5 variant with Crohn disease in affected individuals carrying the risk-associated CARD15 alleles versus those carrying non-risk-associated CARD15 alleles. This is suggestive of a complex pattern of gene-gene interaction between DLG5 and CARD15, reflecting the complex nature of polygenic diseases. Further functional studies will evaluate the biological significance of DLG5 variants.


Nature Genetics | 2005

Sarcoidosis is associated with a truncating splice site mutation in BTNL2.

Ruta Valentonyte; Jochen Hampe; Klaus Huse; Philip Rosenstiel; Mario Albrecht; Annette Stenzel; Marion Nagy; Karoline I. Gaede; Andre Franke; Robert Haesler; Andreas Koch; Thomas Lengauer; Dirk Seegert; Norbert Reiling; Stefan Ehlers; Eberhard Schwinger; Matthias Platzer; Michael Krawczak; Joachim Müller-Quernheim; Manfred Schürmann; Stefan Schreiber

Sarcoidosis is a polygenic immune disorder with predominant manifestation in the lung. Genome-wide linkage analysis previously indicated that the extended major histocompatibility locus on chromosome 6p was linked to susceptibility to sarcoidosis. Here, we carried out a systematic three-stage SNP scan of 16.4 Mb on chromosome 6p21 in as many as 947 independent cases of familial and sporadic sarcoidosis and found that a 15-kb segment of the gene butyrophilin-like 2 (BTNL2) was associated with the disease. The primary disease-associated variant (rs2076530; PTDT = 3 × 10−6, Pcase-control = 1.1 × 10−8; replication PTDT = 0.0018, Pcase-control = 1.8 × 10−6) represents a risk factor that is independent of variation in HLA-DRB1. BTNL2 is a member of the immunoglobulin superfamily and has been implicated as a costimulatory molecule involved in T-cell activation on the basis of its homology to B7-1. The G → A transition constituting rs2076530 leads to the use of a cryptic splice site located 4 bp upstream of the affected wild-type donor site. Transcripts of the risk-associated allele have a premature stop in the spliced mRNA. The resulting protein lacks the C-terminal IgC domain and transmembrane helix, thereby disrupting the membrane localization of the protein, as shown in experiments using green fluorescent protein and V5 fusion proteins.


Journal of Immunology | 2002

p38 Mitogen-Activated Protein Kinase Is Activated and Linked to TNF-α Signaling in Inflammatory Bowel Disease

Georg H. Waetzig; Dirk Seegert; Philip Rosenstiel; Susanna Nikolaus; Stefan Schreiber

Inflammatory bowel diseases (IBD)—Crohn’s disease and ulcerative colitis—are relapsing chronic inflammatory disorders which involve genetic, immunological, and environmental factors. The regulation of TNF-α, a key mediator in the inflammatory process in IBD, is interconnected with mitogen-activated protein kinase pathways. The aim of this study was to characterize the activity and expression of the four p38 subtypes (p38α–δ), c-Jun N-terminal kinases (JNKs), and the extracellular signal-regulated kinases (ERK)1/2 in the inflamed intestinal mucosa. Western blot analysis revealed that p38α, JNKs, and ERK1/2 were significantly activated in IBD, with p38α showing the most pronounced increase in kinase activity. Protein expression of p38 and JNK was only moderately altered in IBD patients compared with normal controls, whereas ERK1/2 protein was significantly down-regulated. Immunohistochemical analysis of inflamed mucosal biopsies localized the main expression of p38α to lamina propria macrophages and neutrophils. ELISA screening of the supernatants of Crohn’s disease mucosal biopsy cultures showed that incubation with the p38 inhibitor SB 203580 significantly reduced secretion of TNF-α. In vivo inhibition of TNF-α by a single infusion of anti-TNF-α Ab (infliximab) resulted in a highly significant transient increase of p38α activity during the first 48 h after infusion. A significant infliximab-dependent p38α activation was also observed in THP-1 myelomonocytic cells. In human monocytes, infliximab enhanced TNF-α gene expression, which could be inhibited by SB 203580. In conclusion, p38α signaling is involved in the pathophysiology of IBD.


Expert Opinion on Therapeutic Targets | 2007

The IL-6/sIL-6R complex as a novel target for therapeutic approaches.

Stefan Rose-John; Georg H. Waetzig; Jürgen Scheller; Joachim Grötzinger; Dirk Seegert

IL-6 plays a pivotal role in immune responses and certain oncologic conditions. The intense investigation of its biological activity and function led to the discovery of two different IL-6-driven signalling pathways. Binding to the membrane-bound IL-6 receptor (mIL-6R, CD126) causes the recruitment of two gp130 co-receptor molecules (CD130) and the activation of intracellular signalling cascades via gp130. Although this classical pathway is mainly limited to hepatocytes, neutrophils, monocytes/macrophages and certain other leukocyte populations, which express IL-6R on their surface, an alternative mechanism has also been described. Proteolytic cleavage of the mIL-6R protein or translation from alternatively spliced mRNA leads to the generation of a soluble form of the IL-6R (sIL-6R), which is likewise able to bind to IL-6. The resulting IL-6/sIL-6R complex is also capable of binding to gp130 and inducing intracellular signalling. Through this so-called ‘trans-signalling’ mechanism, IL-6 is able to stimulate cells that lack an endogenous mIL-6R. High levels of IL-6 and sIL-6R have been reported in several chronic inflammatory and autoimmune diseases as well as in cancer. Preclinical animal disease models have provided strong evidence that specific blockade of IL-6-regulated signalling pathways represents a promising approach for the therapy of these diseases. An optimised variant of the recently described fusion protein sgp30Fc is now heading towards its clinical evaluation.


Gut | 2002

Activation of signal transducer and activator of transcription (STAT) 1 in human chronic inflammatory bowel disease

Stefan Schreiber; Philip Rosenstiel; Jochen Hampe; Susanna Nikolaus; B Groessner; A Schottelius; Tanja Kühbacher; Jens Hämling; Ulrich R. Fölsch; Dirk Seegert

Background: Increased expression of proinflammatory cytokines, including tumour necrosis factor α, interleukin 6, and interferon γ, as well as activation of proinflammatory signalling molecules such as nuclear factor kappa B, is characteristic of inflammatory bowel disease (IBD). Aims: To investigate expression and activation of signal transducer and activator of transcription (STAT) 1 in patients with IBD. Patients: Patients with active IBD (n=42), disease specificity controls (n=8), and normal controls (n=12) were investigated. Methods: Expression and activation of STAT1 were assessed by western blotting and electrophoretic mobility shift assays in extracts of endoscopic colonic biopsies. Cellular localisation was determined by immunohistochemistry. Results: Western blots and immunohistochemical staining revealed an increase in STAT1 expression and activation in mucosal samples from ulcerative colitis and to a lesser extend in Crohns disease patients. High levels of suppressor of cytokine signalling (SOCS)-3 expression, an inhibitor of STAT activation, were observed in Crohns disease patients and normal controls in western blot experiments whereas no differences were observed for SOCS-1 expression. Phosphorylated (p) STAT1 was mainly detected in monocytic cells and neutrophils in the inflamed mucosa. Induction of remission by systemic glucocorticoids led to a decrease in levels of pSTAT1. In vitro studies indicated a direct effect of steroid treatment on STAT1 activation. Conclusions: Expression and activation of STAT1 are predominantly heightened in ulcerative colitis and may therefore play an important role in the pathophysiology of colonic inflammation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Transsignaling of Interleukin-6 Crucially Contributes to Atherosclerosis in Mice

Harald Schuett; René Oestreich; Georg H. Waetzig; Wijtske Annema; Maren Luchtefeld; Anja Hillmer; Udo Bavendiek; Johann von Felden; Dimitar Divchev; Tibor Kempf; Kai C. Wollert; Dirk Seegert; Stefan Rose-John; Uwe J. F. Tietge; Bernhard Schieffer; Karsten Grote

Objective—Transsignaling of interleukin (IL)-6 is a central pathway in the pathogenesis of disorders associated with chronic inflammation, such as Crohn disease, rheumatoid arthritis, and inflammatory colon cancer. Notably, IL-6 also represents an independent risk factor for coronary artery disease (CAD) in humans and is crucially involved in vascular inflammatory processes. Methods and Results—In the present study, we showed that treatment with a fusion protein of the natural IL-6 transsignaling inhibitor soluble glycoprotein 130 (sgp130) and IgG1-Fc (sgp130Fc) dramatically reduced atherosclerosis in hypercholesterolemic Ldlr−/− mice without affecting weight gain and serum lipid levels. Moreover, sgp130Fc treatment even led to a significant regression of advanced atherosclerosis. Mechanistically, endothelial activation and intimal smooth muscle cell infiltration were decreased in sgp130Fc-treated mice, resulting in a marked reduction of monocyte recruitment and subsequent atherosclerotic plaque progression. Of note, patients with CAD exhibited significantly lower plasma levels of endogenous sgp130, suggesting that a compromised counterbalancing of IL-6 transsignaling may contribute to atherogenesis in humans. Conclusion—These data clarify, for the first time, the critical involvement of, in particular, the transsignaling of IL-6 in CAD and warrant further investigation of sgp130Fc as a novel therapeutic for the treatment of CAD and related diseases.


The FASEB Journal | 2004

Soluble tumor necrosis factor (TNF) receptor-1 induces apoptosis via reverse TNF signaling and autocrine transforming growth factor-β1

Georg H. Waetzig; Philip Rosenstiel; Alexander Arlt; Andreas Till; Karen Bräutigam; Stefan Rose-John; Dirk Seegert; Stefan Schreiber

The pro‐inflammatory cytokine tumor necrosis factor‐α (TNF‐α) plays a central role in inflammatory disorders. Transmembrane TNF‐α and its two receptors are cleaved by the proteinase TNF‐α converting enzyme (TACE), resulting in appreciable serum levels of soluble TNF‐α and soluble TNF‐α receptors (sTNFR1 and ‐2). The only known functions of sTNFR1 are to antagonize and buffer circulating TNF‐α. Here, we present evidence that sTNFR1 exerts immunoregulatory functions by induction of apoptosis in monocytes through reverse signaling via transmembrane TNF‐α. sTNFR1‐induced apoptosis is independent of death receptor pathways but depends on autocrine transforming growth factor (TGF)‐β1 signaling through the mitogen‐activated protein kinase p38α. This novel mechanism has implications for understanding the physiological role of sTNFR1 and for TNF‐α‐blocking therapies of autoimmune diseases.


Critical Care Medicine | 2011

Selective blockade of interleukin-6 trans-signaling improves survival in a murine polymicrobial sepsis model*

Tanja Barkhausen; Thomas Tschernig; Philip Rosenstiel; Martijn van Griensven; Ralf-Peter Vonberg; Martina Dorsch; Annika Mueller-Heine; Athena Chalaris; Jürgen Scheller; Stefan Rose-John; Dirk Seegert; Christian Krettek; Georg H. Waetzig

Objective: The pleiotropic cytokine interleukin (IL)-6 seems to play a pivotal role in sepsis, but contradictory findings in animal models impede a rationale for therapies directed against IL-6. IL-6 signals by two mechanisms via the ubiquitous transmembrane glycoprotein 130 (gp130): “classic” signaling using membrane-bound IL-6 receptor (IL-6R) and trans-signaling using soluble IL-6R (sIL-6R). Trans-signaling is selectively inhibited by soluble gp130 (sgp130). The aim of this study was to systematically compare complete blockade of IL-6 signaling (using a neutralizing anti-IL-6 antibody) and selective blockade of IL-6 trans-signaling (using a fusion protein of sgp130 and the crystallizable fragment of immunoglobulin G1, sgp130Fc) in a standardized cecal ligation and puncture (CLP) sepsis model. Design: Animal study. Setting: Animal laboratory. Subjects: C57BL/6J mice. Interventions: We performed a 96-hr dose-response study and a 24-hr study to investigate short-term mechanisms. In the 96-hr study, CLP was performed in 120 randomized mice (20 mice received vehicle, 10 mice per dose group). Mice were treated with equimolar doses of sgp130Fc (0.01/0.1/1/10 mg/kg) or anti-IL-6 (0.008/0.08/0.8/8 mg/kg) 24 hrs before CLP. Two additional groups received 0.5 mg/kg sgp130Fc 24 hrs before or 1 mg/kg sgp130Fc 24 hrs after CLP. Survival and activity scores were obtained daily until 96 hrs after CLP. In the 24-hr study, mice were randomized into four groups with 10 animals each (sham/vehicle, CLP/vehicle, CLP/anti-IL-6 [0.8 mg/kg], and CLP/sgp130Fc [1 mg/kg]) and killed after 24 hrs. Measurements and Main Results: In contrast to anti-IL-6, pretreatment with sgp130Fc significantly and dose-dependently increased survival from 45% to 100%. In addition, 1 mg/kg sgp130Fc administered 24 hrs after CLP increased survival from 45% to 80%. Mechanistically, sgp130Fc efficacy was reflected by complete prevention of epithelial cell apoptosis in the jejunum after CLP, which was not achieved with anti-IL-6. Conclusion: Selective inhibition of IL-6 trans-signaling by sgp130Fc has considerable potential for the treatment of sepsis and related disorders.


International Journal of Immunopathology and Pharmacology | 2009

Suppression of Map Kinases Inhibits Microglial Activation and Attenuates Neuronal Cell Death Induced by Alpha-Synuclein Protofibrils

Henrik Wilms; Philip Rosenstiel; Marina Romero-Ramos; Alexander Arlt; Dirk Seegert; Kahle Pj; Odoy S; Claasen Jh; Holzknecht C; Lars-Ove Brandenburg; G. Deuschl; Stefan Schreiber; Deniz Kirik; Ralph Lucius

α-Synuclein (α-Syn) accounts, as a major component of Lewy bodies (LB), for the filamentous deposits in many cases of neurodegenerative diseases. Yet, little is known about the molecular mechanisms of neuronal loss in these diseases. The correlation between α-Syn oligomerization/aggregation and pathologies raises the key question of which molecular form of α-Syn (i.e. monomeric α-Syn, protofibrils or mature fibrils) represents the damage-inducing culprit in the scenario of synucleinopathies. We show that human α-Syn protofibrils (PFs) are potent activators of parallel proinflammatory signalling pathways (p38 and ERK1/2 MAP kinases and NF-κB) in microglial cells in vitro. Furthermore, stereotactic injection of α-Syn PFs into the substantia nigra of adult rats leads to a profound activation of microglia and adjacent neuronal cell loss, which can be attenuated by the MAP kinase inhibitor semapimod. We propose that the neurodegenerative process of α-synucleinopathies involves microglial activation through α-Syn released or extruded from cells with pathogenic α-Syn metabolism. Compounds that inhibit the MAPK/NF-κB pathways might be a promising pharmacological strategy for the treatment of the inflammatory component of synucleinopathies including PD.


Journal of Biological Chemistry | 2008

Structure-guided Optimization of the Interleukin-6 Trans-signaling Antagonist sgp130

Stephanie Tenhumberg; Georg H. Waetzig; Athena Chalaris; Björn Rabe; Dirk Seegert; Jürgen Scheller; Stefan Rose-John; Joachim Grötzinger

Binding of interleukin-6 (IL-6) to its specific receptor IL-6R is a prerequisite for the activation of the signal-transducing receptor glycoprotein 130 (gp130). A soluble form of the IL-6R (sIL-6R) in complex with IL-6 can activate cells lacking membrane-bound IL-6R (trans-signaling). IL-6-trans-signaling is counterbalanced by a naturally occurring, soluble form of gp130 (sgp130), whereby signaling via the membrane-bound IL-6R is not affected. Many inflammatory and neoplastic disorders are driven by IL-6 trans-signaling. By analysis of the three-dimensional structure of gp130 in complex with IL-6 and sIL-6R, we identified amino acid side chains in gp130 as candidates for the generation of sgp130 muteins with increased binding affinity to IL-6/sIL-6R. In addition, with information from modeling and NMR analysis of the membrane proximal domain of gp130, we generated a more stable variant of sgp130Fc. Proteins were tested for binding to the IL-6/sIL-6R-complex, for inhibition of IL-6/sIL-6R-induced cell proliferation and of acute phase gene expression. Several mutations showed an additive effect in improving the binding affinity of human sgp130 toward human IL-6/sIL-6R. Finally, we demonstrate the species specificity of these mutations in the optimal triple mutein (T102Y/Q113F/N114L) both in vitro and in a mouse model of acute inflammation.

Collaboration


Dive into the Dirk Seegert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jochen Hampe

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge