Dirk Sieger
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dirk Sieger.
Developmental Cell | 2012
Dirk Sieger; Thomas Ziegenhals; Sergey Prykhozhij; Francesca Peri
Microglia are the resident phagocytes of the brain that are responsible for the clearance of injured neurons, an essential step in subsequent tissue regeneration. How death signals are controlled both in space and time to attract these cells toward the site of injury is a topic of great interest. To this aim, we have used the optically transparent zebrafish larval brain and identified rapidly propagating Ca2+ waves that determine the range of microglial responses to neuronal cell death. We show that while Ca2+-mediated microglial responses require ATP, the spreading of intercellular Ca2+ waves is ATP independent. Finally, we identify glutamate as a potent inducer of Ca2+-transmitted microglial attraction. Thus, this real-time analysis reveals the existence of a mechanism controlling microglial targeted migration to neuronal injuries that is initiated by glutamate and proceeds across the brain in the form of a Ca2+ wave.
Development | 2003
Martin Gajewski; Dirk Sieger; Burkhard Alt; Christian Leve; Stefan Hans; Christian Wolff; Klaus B. Rohr; Diethard Tautz
Somite formation in vertebrates depends on a molecular oscillator in the presomitic mesoderm (PSM). In order to get a better insight into how oscillatory expression is achieved in the zebrafish Danio rerio, we have analysed the regulation of her1 and her7, two bHLH genes that are co-expressed in the PSM. Using specific morpholino oligonucleotide mediated inhibition and intron probe in situ hybridisation, we find that her7 is required for initiating the expression in the posterior PSM, while her1 is required to propagate the cyclic expression in the intermediate and anterior PSM. Reporter gene constructs with the her1 upstream sequence driving green fluorescent protein (GFP) expression show that separable regulatory regions can be identified that mediate expression in the posterior versus intermediate and anterior PSM. Our results indicate that the cyclic expression is generated at the transcriptional level and that the resulting mRNAs have a very short half-life. A specific degradation signal for her1 mRNA must be located in the 5′-UTR, as this region also destabilises the GFP mRNA such that it mimics the dynamic pattern of the endogenous her1 mRNA. In contrast to the mRNA, GFP protein is stable and we find that all somitic cells express the protein, proving that her1 mRNA is transiently expressed in all cells of the PSM.
Disease Models & Mechanisms | 2009
Dirk Sieger; Cornelia Stein; David Neifer; Astrid M. van der Sar
SUMMARY The zebrafish genome contains ten genes that encode class II cytokine-like peptides, of which the two that are related most closely to mammalian interferon gamma (IFN-γ) were named IFN-γ1 and IFN-γ2. Although the zebrafish has become a popular model system to study immune mechanisms, and although interferons are central regulators of immunity, which zebrafish cytokines correspond functionally to mammalian IFN-γ has not been established. We used zebrafish embryos to assay the functions of IFN-γ1 and IFN-γ2, and have identified a subset of zebrafish homologs of the mammalian IFN-responsive genes as IFN-γ targets in the zebrafish embryo: these genes are upregulated in response to raised levels of either IFN-γ1 or IFN-γ2. Infection studies using two different pathogens show that IFN-γ signalling is required for resistance against bacterial infections in the young embryo and that the levels of IFN-γ need to be regulated tightly: raising IFN-γ levels sensitizes fish embryos against bacterial infection. Embryos injected with high doses of Escherichia coli are able to clear the bacteria within a day, and the γ-interferons are necessary for this defence reaction. The protective response to Yersinia ruckeri, a natural fish pathogen that is lethal at low doses, also requires IFN-γ. As in the induction of target genes, the two interferons act at least partly redundantly. Together with the previously demonstrated type III interferon response, these results show that the counterparts of the mammalian viral and bacterial interferon-dependent defence functions are in place in zebrafish embryos, and suggest that zebrafish IFN-γ1 and IFN-γ2 are functionally equivalent to mammalian IFN-γ.
Journal of Immunology | 2010
Dina Aggad; Cornelia Stein; Dirk Sieger; Martine Mazel; Pierre Boudinot; Philippe Herbomel; Jean-Pierre Levraud; Georges Lutfalla
The zebrafish genome contains a large number of genes encoding potential cytokine receptor genes as judged by homology to mammalian receptors. The sequences are too divergent to allow unambiguous assignments of all receptors to specific cytokines, and only a few have been assigned functions by functional studies. Among receptors for class II helical cytokines—i.e., IFNs that include virus-induced Ifns (Ifn-ϕ) and type II Ifns (Ifn-γ), together with Il-10 and its related cytokines (Il-20, Il-22, and Il-26)—only the Ifn-ϕ–specific complexes have been functionally identified, whereas the receptors for the two Ifn-γ (Ifn-γ1 and Ifn-γ2) are unknown. In this work, we identify conditions in which Ifn-γ1 and Ifn-γ2 (also called IFNG or IFN-γ and IFN-gammarel) are induced in fish larvae and adults. We use morpholino-mediated loss-of-function analysis to screen candidate receptors and identify the components of their receptor complexes. We find that Ifn-γ1 and Ifn-γ2 bind to different receptor complexes. The receptor complex for Ifn-γ2 includes cytokine receptor family B (Crfb)6 together with Crfb13 and Crfb17, whereas the receptor complex for Ifn-γ1 does not include Crfb6 or Crfb13 but includes Crfb17. We also show that of the two Jak2 paralogues present in the zebrafish Jak2a but not Jak2b is involved in the intracellular transmission of the Ifn-γ signal. These results shed new light on the evolution of the Ifn-γ signaling in fish and tetrapods and contribute toward an integrated view of the innate immune regulation in vertebrates.
Mechanisms of Development | 2003
Dirk Sieger; Diethard Tautz; Martin Gajewski
Suppressor of Hairless (Su(H)) codes for a protein that interacts with the intracellular domain of Notch to activate the target genes of the Delta-Notch signalling pathway. We have cloned the zebrafish homologue of Su(H) and have analysed its function by morpholino mediated knockdown. While there are at least four notch and four delta homologues in zebrafish, there appears to be only one complete Su(H) homologue. We have analysed the function of Su(H) in the somitogenesis process and its influence on the expression of notch pathway genes, in particular her1, her7, deltaC and deltaD. The cyclic expression of her1, her7 and deltaC in the presomitic mesoderm is disrupted by the Su(H) knockdown mimicking the expression of these genes in the notch1a mutant deadly seven. deltaD expression is similarly affected by Su(H) knockdown like deltaC but shows in addition an ectopic expression in the developing neural tube. The inactivation of Su(H) in a fss/tbx24 mutant background leads furthermore to a clear breakdown of cyclic her1 and her7 expression, indicating that the Delta-Notch pathway is required for the creation of oscillation and not only for the synchronisation between neighbouring cells. The strongest phenotypes in the Su(H) knockdown embryos show a loss of all somites posterior to the first five to seven ones. This phenotype is stronger than the known amorphic phenotypes for notch1 (des) or deltaD (aei) in zebrafish, but mimicks the knockout phenotype of RBP-Jkappa gene in the mouse, which is the homologue of Su(H). This suggests that there is some functional redundancy among the Notch and Delta genes. This fact that the first five to seven somites are only weakly affected by Su(H) knockdown indicates that additional genetic pathways may be active in the specification of the most anterior somites.
Development Genes and Evolution | 2004
Dirk Sieger; Diethard Tautz; Martin Gajewski
Somitogenesis requires an intricate process of pre-patterning, which is driven by an oscillator mechanism consisting of the Delta-Notch pathway and hairy- (h) and Enhancer of split- [E(spl)] related genes. With the aim of unravelling the complex mechanism of somite pre-patterning, we have conducted an extensive search for h/E(spl)-related genes in the third release of the Danio rerio genomic sequence. We identified 14 new h/E(spl) genes and analysed them by in situ hybridisation for their potential role in the somitogenesis process. We describe here the functional analysis of one of these genes, which we have named her11. her11 is a paralogue of her1 and, similar to her1, is arranged in a head to head fashion with another her gene, namely the previously described her5. It shares an expression in the midbrain-hindbrain boundary with her5, but is in addition cyclically expressed in patterns overlapping those of her1 and her7 and complementary to those of hey1. Furthermore it is expressed in the anterior half of the most caudally formed somites. We show that Delta-Notch pathway genes and fused somites (fss) are necessary for the control of her11 expression. However, some aspects of the her11 regulation suggest that at least one additional as yet unknown gene of the Delta-Notch cascade is required to explain its expression. Morpholino-oligonucleotide-mediated knockdown of her11 shows that it is involved in the zebrafish somitogenesis clock via an interaction with her1 and her7. We have also studied the role of hey1 by morpholino injection, but could not find a direct function for this gene, suggesting that it reflects the output of the clock rather than being a core component of the mechanism.
Glia | 2013
Dirk Sieger; Francesca Peri
Microglia, the resident phagocytes of brain, have been intensively studied since their discovery in the 1920s. There is no doubt that the possibility of culturing microglia in vitro has advanced enormously our understanding of these cells. However, as we know today, that microglia react to even small changes in the brain, it is crucial to also study these cells by preserving as much as possible their natural environment. Nowadays, advances in imaging technologies and transgenic cell labeling methods allow the direct observation of cells at work. These in vivo approaches have already changed our view on microglia by showing that these cells are active even in the healthy adult brain. As today, there is upcoming evidence that microglia can directly influence neuronal activity, understanding their roles and, in particular, their interactions with neurons is of great importance. The aim of this review is to illustrate three animal models that are currently used for microglial research and to discuss their characteristics and advantages by presenting recent achievements in microglial research. In our view the availability of different systems for studying microglia will lead to a more comprehensive understanding of their functions.
Development Genes and Evolution | 2006
Martin Gajewski; Harun Elmasri; Manuel Girschick; Dirk Sieger; Christoph Winkler
Somitogenesis is the key developmental step, which divides the vertebrate body axis into segmentally repeated structures. It requires an intricate process of pre-patterning, which is driven by an oscillator mechanism consisting of the Delta–Notch pathway and various hairy- and Enhancer of split-related (her) genes. The subset of her genes, which are necessary to set up the segmentation clock, reveal a complex scenario of interactions. To understand which her genes are essential core players in this process, we compared the expression patterns of somitogenesis-relevant her genes in zebrafish and medaka (Oryzias latipes). Most of the respective medaka genes (Ol-her) are duplicated like what has been shown for zebrafish (Dr-her) and pufferfish genes (Fr-her). However, zebrafish genes show some additional copies and significant differences in expression patterns. For the paralogues Dr-her1 and Dr-her11, only one copy exists in the medaka (Ol-her1/11), which combines the expression patterns found for both zebrafish genes. In contrast to Dr-her5, the medaka orthologue appears to play a role in somitogenesis because it is expressed in the presomitic mesoderm (PSM). PSM expression also suggests a role for both Ol-her13 genes, homologues of mouse Hes6 (mHes6), in this process, which would be consistent with a conserved mHes6 homologue gear in the segmentation clock exclusively in lower vertebrates. Members of the mHes5 homologue group seem to be involved in somite formation in all vertebrates (e.g. Dr- and Ol-her12), although different paralogues are additionally recruited in zebrafish (e.g. Dr-her15) and medaka (e.g. Ol-her4). We found that the linkage between duplicates is strongly conserved between pufferfish and medaka and less well conserved in zebrafish. Nevertheless, linkage and orientation of several her duplicates are identical in all three species. Therefore, small-scale duplications must have happened before whole genome duplication occurred in a fish ancestor. Expression of multiple stripes in the intermediate PSM, characteristic for the zebrafish orthologues, is absent in all somitogenesis-related her genes of the medaka. In fact, the expression mode of Ol-her1/11 and Ol-her5 indicates dynamism similar to the hairy clock genes in chicken and mouse. This suggests that Danio rerio shows a rather derived clock mode when compared to other fish species and amniotes or that, alternatively, the clock mode evolved independently in zebrafish, medaka and mouse or chicken.
Glia | 2013
Han-Ning Chuang; Denise van Rossum; Dirk Sieger; Laila Siam; Florian Klemm; Annalen Bleckmann; Michaela Bayerlová; Katja Farhat; Jörg Scheffel; Matthias Schulz; Faramarz Dehghani; Christine Stadelmann; Uwe-Karsten Hanisch; Claudia Binder; Tobias Pukrop
The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carcinoma cell invasion. Here we report that this is a fatal side effect of a physiological damage response of the brain tissue. In a brain slice coculture model, contact with both benign and malignant epithelial cells induced a response by microglia and astrocytes comparable to that seen at the interface of human cerebral metastases. While the glial damage response intended to protect the brain from intrusion of benign epithelial cells by inducing apoptosis, it proved ineffective against various malignant cell types. They did not undergo apoptosis and actually exploited the local tissue reaction to invade instead. Gene expression and functional analyses revealed that the C‐X‐C chemokine receptor type 4 (CXCR4) and WNT signaling were involved in this process. Furthermore, CXCR4‐regulated microglia were recruited to sites of brain injury in a zebrafish model and CXCR4 was expressed in human stroke patients, suggesting a conserved role in damage responses to various types of brain injuries. Together, our findings point to a detrimental misuse of the glial damage response program by carcinoma cells resistant to glia‐induced apoptosis. GLIA 2013;61:1331–1346
Development | 2016
Jochen Ohnmacht; Yujie Yang; Gianna W. Maurer; Antón Barreiro-Iglesias; Themistoklis M. Tsarouchas; Daniel Wehner; Dirk Sieger; Catherina G. Becker; Thomas Becker
ABSTRACT In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells. Summary: Regeneration of spinal motor neurons following mechanical lesion or genetic ablation occurs at the expense of oligodendrogenesis and is promoted by the innate immune system.