Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ditte Dencker is active.

Publication


Featured researches published by Ditte Dencker.


The Journal of Neuroscience | 2010

A Subpopulation of Neuronal M4 Muscarinic Acetylcholine Receptors Plays a Critical Role in Modulating Dopamine-Dependent Behaviors

Jongrye Jeon; Ditte Dencker; Gitta Wörtwein; David P. D. Woldbye; Yinghong Cui; Albert A. Davis; Allan I. Levey; Günther Schütz; Thomas N. Sager; Arne Mørk; Cuiling Li; Chu-Xia Deng; Anders Fink-Jensen; Jürgen Wess

Acetylcholine (ACh) regulates many key functions of the CNS by activating cell surface receptors referred to as muscarinic ACh receptors (M1–M5 mAChRs). Like other mAChR subtypes, the M4 mAChR is widely expressed in different regions of the forebrain. Interestingly, M4 mAChRs are coexpressed with D1 dopamine receptors in a specific subset of striatal projection neurons. To investigate the physiological relevance of this M4 mAChR subpopulation in modulating dopamine-dependent behaviors, we used Cre/loxP technology to generate mutant mice that lack M4 mAChRs only in D1 dopamine receptor-expressing cells. The newly generated mutant mice displayed several striking behavioral phenotypes, including enhanced hyperlocomotor activity and increased behavioral sensitization following treatment with psychostimulants. These behavioral changes were accompanied by a lack of muscarinic inhibition of D1 dopamine receptor-mediated cAMP stimulation in the striatum and an increase in dopamine efflux in the nucleus accumbens. These novel findings demonstrate that a distinct subpopulation of neuronal M4 mAChRs plays a critical role in modulating several important dopamine-dependent behaviors. Since enhanced central dopaminergic neurotransmission is a hallmark of several severe disorders of the CNS, including schizophrenia and drug addiction, our findings have substantial clinical relevance.


ACS Chemical Neuroscience | 2014

Selective Activation of M4 Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents

Michael Bubser; Thomas M. Bridges; Ditte Dencker; Robert W. Gould; Michael Grannan; Meredith J. Noetzel; Atin Lamsal; Colleen M. Niswender; J. Scott Daniels; Michael S. Poslusney; Bruce J. Melancon; James C. Tarr; Frank W. Byers; Jürgen Wess; Mark E. Duggan; John Dunlop; Michael W. Wood; Nicholas J. Brandon; Michael R. Wood; Craig W. Lindsley; P. Jeffrey Conn; Carrie K. Jones

Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central nervous system. Prior to this study, the M1 mAChR subtype was viewed as the primary candidate for these actions relative to the other mAChR subtypes. Here we describe the discovery of a novel M4 PAM, VU0467154, with enhanced in vitro potency and improved pharmacokinetic properties relative to other M4 PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801. VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated with schizophrenia and other neuropsychiatric disorders.


Psychopharmacology | 2011

Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice

Lene S. Schmidt; Morgane Thomsen; Pia Weikop; Ditte Dencker; Jürgen Wess; David P. D. Woldbye; Gitta Wörtwein; Anders Fink-Jensen

RationaleThe reinforcing effects of cocaine are mediated by the mesolimbic dopamine system. Behavioral and neurochemical studies have shown that the cholinergic muscarinic M4 receptor subtype plays an important role in regulation of dopaminergic neurotransmission.ObjectivesHere we investigated for the first time the involvement of M4 receptors in the reinforcing effects of cocaine using chronic intravenous cocaine self-administration in extensively backcrossed M4 receptor knockout (M4−/−) mice.MethodsWe evaluated acquisition of cocaine self-administration in experimentally naïve mice. Both cocaine self-administration and food-maintained operant behavior were evaluated under fixed ratio 1 (FR 1) and progressive ratio (PR) schedules of reinforcement. In addition, cocaine-induced dopamine release and cocaine-induced hyperactivity were evaluated.ResultsM4−/− mice earned significantly more cocaine reinforcers and reached higher breaking points than their wild-type littermates (M4+/+) at intermediate doses of cocaine under both FR 1 and PR schedules of reinforcement. Under the PR schedule, M4−/− mice exhibited significantly higher response rates at the lowest liquid food concentration. In accordance with these results, cocaine-induced dopamine efflux in the nucleus accumbens and hyperlocomotion were increased in M4−/− mice compared to M4+/+ mice.ConclusionsOur data suggest that M4 receptors play an important role in regulation of the reward circuitry and may serve as a new target in the medical treatment of drug addiction.


The Journal of Neuroscience | 2011

Involvement of a Subpopulation of Neuronal M4 Muscarinic Acetylcholine Receptors in the Antipsychotic-like Effects of the M1/M4 Preferring Muscarinic Receptor Agonist Xanomeline

Ditte Dencker; Gitta Wörtwein; Pia Weikop; Jongrye Jeon; Morgane Thomsen; Thomas N. Sager; Arne Mørk; David P. D. Woldbye; Jürgen Wess; Anders Fink-Jensen

Disturbances in central dopaminergic neurotransmission are believed to be centrally involved in the pathogenesis of schizophrenia. Central dopaminergic and cholinergic systems interact and the cholinergic muscarinic agonist xanomeline has shown antipsychotic effects in clinical studies. Preclinical studies indicate that the M4 muscarinic cholinergic receptor subtype (mAChR) modulates the activity of the dopaminergic system and that this specific mAChR subtype is involved in mediating the antipsychotic-like effects of xanomeline. A specific neuronal subpopulation that expresses M4 mAChRs together with D1 dopamine receptors seems to be especially important in modulating dopamine-dependent behaviors. Using mutant mice that lack the M4 mAChR only in D1 dopamine receptor-expressing cells (D1-M4-KO), we investigated the role of this neuronal population in the antipsychotic-like effects of xanomeline in amphetamine-induced hyperactivity and apomorphine-induced climbing. Interestingly, the antipsychotic-like effects of xanomeline in the two models were almost completely abolished in D1-M4-KO mice, suggesting that M4 mAChRs colocalized with D1 dopamine receptors are centrally involved in mediating the antipsychotic-like effects of xanomeline. This is consistent with the hypothesis that activation of the M4 mAChR represents a potential target for the future medical treatment of psychosis.


Psychopharmacology | 2012

An allosteric enhancer of M4 muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine

Ditte Dencker; Pia Weikop; Gunnar Sørensen; David P. D. Woldbye; Gitta Wörtwein; Jürgen Wess; Anders Fink-Jensen

RationaleThe mesostriatal dopamine system plays a key role in mediating the reinforcing effects of psychostimulant drugs like cocaine. The muscarinic M4 acetylcholine receptor subtype is centrally involved in the regulation of dopamine release in striatal areas. Consequently, striatal M4 receptors could be a novel target for modulating psychostimulant effects of cocaine.ObjectivesFor the first time, we here addressed this issue by investigating the effects of a novel selective positive allosteric modulator of M4 receptors, VU0152100, on cocaine-induced behavioral and neurochemical effects in mice.MethodsTo investigate the effect of VU0152100 on the acute reinforcing effects of cocaine, we use an acute cocaine self-administration model. We used in vivo microdialysis to investigate whether the effects of VU0152100 in the behavioral studies were mediated via effects on dopaminergic neurotransmission. In addition, the effect of VU0152100 on cocaine-induced hyperactivity and rotarod performance was evaluated.ResultsWe found that VU0152100 caused a prominent reduction in cocaine self-administration, cocaine-induced hyperlocomotion, and cocaine-induced striatal dopamine increase, without affecting motor performance. Consistent with these effects of VU0152100 being mediated via M4 receptors, its inhibitory effects on cocaine-induced increases in striatal dopamine were abolished in M4 receptor knockout mice. Furthermore, selective deletion of the M4 receptor gene in dopamine D1 receptor-expressing neurons resulted in a partial reduction of the VU0152100 effect, indicating that VU0152100 partly regulates dopaminergic neurotransmission via M4 receptors co-localized with D1 receptors.ConclusionsThese results show that positive allosteric modulators of the M4 receptor deserve attention as agents in the future treatment of cocaine abuse.


Psychopharmacology | 2012

Neuropeptide Y Y5 receptor antagonism attenuates cocaine-induced effects in mice

Gunnar Sørensen; Morten Jensen; Pia Weikop; Ditte Dencker; Søren H. Christiansen; Claus J. Loland; Cecilie Hee Bengtsen; Jørgen Holm Petersen; Anders Fink-Jensen; Gitta Wörtwein; David P. D. Woldbye

RationaleSeveral studies suggest a role for neuropeptide Y (NPY) in addiction to drugs of abuse, including cocaine. However, the NPY receptors mediating addiction-related effects remain to be determined.ObjectivesTo explore the potential role of Y5 NPY receptors in cocaine-induced behavioural effects.MethodsThe Y5 antagonist L-152,804 and Y5-knockout (Y5-KO) mice were tested in two models of cocaine addiction-related behaviour: acute self-administration and cocaine-induced hyperactivity. We also studied effects of Y5 receptor antagonism on cocaine-induced c-fos expression and extracellular dopamine with microdialysis as well as dopamine transporter-mediated uptake of dopamine in vitro. Immunocytochemistry was used to determine whether dopamine neurons express Y5-like immunoreactivity.ResultsIn self-administration, L-152,804 prominently decreased nose-poking for the peak dose of cocaine and shifted the dose–response curve for cocaine downward. Y5-KO mice also showed modestly attenuated self-administration. Cocaine-induced hyperactivity was attenuated by L-152,804 and in Y5-KO mice. Cocaine failed to increase c-fos expression in the nucleus accumbens and striatum of L-152,804-treated mice, indicating that the Y5 antagonist could act by influencing neural activity in these regions. Accordingly, the cocaine-induced increase in accumbal extracellular dopamine was attenuated by L-152,804 and in Y5-KO mice, suggesting that Y5 antagonism influences cocaine-induced behaviour by regulating dopamine. Consistent with this concept, dopamine neurons in the ventral tegmental area appeared to contain Y5 receptors. In contrast, neither L-152,804 nor NPY influenced dopamine transporter-mediated dopamine uptake.ConclusionsThe present data indicate that Y5 antagonism may attenuate cocaine-induced behavioural effects, suggesting that Y5 receptors could be a potential therapeutic target in cocaine addiction.


European Journal of Pharmacology | 2011

Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor.

Anders Fink-Jensen; Lene S. Schmidt; Ditte Dencker; Christina Schülein; Jürgen Wess; Gitta Wörtwein; David P. D. Woldbye

A delicate balance exists between the central dopaminergic and cholinergic neurotransmitter systems with respect to motor function. An imbalance can result in motor dysfunction as observed in Parkinsons disease patients and in patients treated with antipsychotic compounds. Cholinergic receptor antagonists can alleviate extrapyramidal symptoms in Parkinsons disease and motor side effects induced by antipsychotics. The effects of anticholinergics are mediated by muscarinic receptors of which five subtypes (M(1)-M(5)) exist. Muscarinic M(4) receptors are found at high concentrations in motor parts of the striatum, suggesting a role for muscarinic M(4) receptors in the motor side effects of antipsychotics, and in the alleviation of these side effects by anticholinergics. Here we investigated the potential role of the muscarinic M(4) receptor in catalepsy induced by antipsychotics (haloperidol and risperidone) as well as the anti-cataleptic effects of the non-selective anticholinergic drug scopolamine in fully backcrossed muscarinic M(4) receptor knockout mice. The drug-induced catalepsy was strongly attenuated, but not abolished, in M(4) knockout mice as compared to wild-type controls. Scopolamine further attenuated the cataleptic response in M(4) knockout mice, suggesting that non-M(4) muscarinic receptors also participate in the anti-cataleptic effects. In conclusion, these data indicate an important role for M(4) receptors in antipsychotic-induced motor side effects and suggest that M(4) receptors could be a target for future pharmacological treatment of antipsychotic-induced as well as idiopathic parkinsonism.


ACS Chemical Neuroscience | 2015

Role for the M1 Muscarinic Acetylcholine Receptor in Top-Down Cognitive Processing Using a Touchscreen Visual Discrimination Task in Mice.

Robert W. Gould; Ditte Dencker; Michael Grannan; Michael Bubser; Xiaoyan Zhan; Jürgen Wess; Zixiu Xiang; Charles W. Locuson; Craig W. Lindsley; P. J. Conn; Carrie K. Jones

The M1 muscarinic acetylcholine receptor (mAChR) subtype has been implicated in the underlying mechanisms of learning and memory and represents an important potential pharmacotherapeutic target for the cognitive impairments observed in neuropsychiatric disorders such as schizophrenia. Patients with schizophrenia show impairments in top-down processing involving conflict between sensory-driven and goal-oriented processes that can be modeled in preclinical studies using touchscreen-based cognition tasks. The present studies used a touchscreen visual pairwise discrimination task in which mice discriminated between a less salient and a more salient stimulus to assess the influence of the M1 mAChR on top-down processing. M1 mAChR knockout (M1 KO) mice showed a slower rate of learning, evidenced by slower increases in accuracy over 12 consecutive days, and required more days to acquire (achieve 80% accuracy) this discrimination task compared to wild-type mice. In addition, the M1 positive allosteric modulator BQCA enhanced the rate of learning this discrimination in wild-type, but not in M1 KO, mice when BQCA was administered daily prior to testing over 12 consecutive days. Importantly, in discriminations between stimuli of equal salience, M1 KO mice did not show impaired acquisition and BQCA did not affect the rate of learning or acquisition in wild-type mice. These studies are the first to demonstrate performance deficits in M1 KO mice using touchscreen cognitive assessments and enhanced rate of learning and acquisition in wild-type mice through M1 mAChR potentiation when the touchscreen discrimination task involves top-down processing. Taken together, these findings provide further support for M1 potentiation as a potential treatment for the cognitive symptoms associated with schizophrenia.


European Journal of Pharmacology | 2015

Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice

Cecilie de la Cour; Gunnar Sørensen; Gitta Wörtwein; Pia Weikop; Ditte Dencker; Anders Fink-Jensen; Anna Molander

Modulation of cholinergic neurotransmission via nicotinic acetylcholine receptors is known to alter alcohol-drinking behavior. It is not known if muscarinic acetylcholine receptor subtypes have similar effects. The muscarinic M4 receptor is highly expressed in the brain reinforcement system and involved in regulation of cholinergic and dopaminergic transmission. Here we investigate, for the first time, the role of the M4 receptor in alcohol consumption using M4 knockout (M4(-/-)) and wild-type (M4(+/+)) mice. Experimentally naïve M4(-/-) and M4(+/+) mice were trained to orally self-administer 5%, 8% and 10% alcohol in 60min sessions, 6 days/week, after having undergone a standard sucrose fading training procedure on a fixed ratio schedule. The mice were further subjected to an extinction period followed by a 1 day reinstatement trial. M4(-/-) mice consumed more alcohol at 5% and 8% compared to their M4(+/+) littermates. The highest alcohol concentration used (10%) did not immediately result in divergent drinking patterns, but after 4 weeks of 10% alcohol self-administration, baseline levels as well as a pattern of M4(-/-) mice consuming more alcohol than their M4(+/+) controls were re-established. Moreover, the M4(-/-) mice displayed a reduced capacity to extinguish their alcohol-seeking behavior. Taken together, alcohol consumption is elevated in M4(-/-) mice, indicating that the M4 receptor is involved in mediating the reinforcing effects of alcohol. The M4 receptor should be further explored as a potential target for pharmacological (positive allosteric modulators or future agonists) treatment of alcohol use disorders.


Pharmacology, Biochemistry and Behavior | 2017

The glucagon-like peptide 1 receptor agonist Exendin-4 decreases relapse-like drinking in socially housed mice

Morgane Thomsen; Ditte Dencker; Gitta Wörtwein; Pia Weikop; Emil Egecioglu; Elisabet Jerlhag; Anders Fink-Jensen; Anna Molander

Glucagon-like peptide-1 (GLP-1) is a gut peptide that regulates food intake and glucose metabolism. GLP-1 is also produced and released in the brain, and GLP-1 receptors are expressed in brain regions important for alcohol and drug reward, and for the development of addiction. GLP-1 receptor agonists can decrease alcohol intake acutely in rodents. However, alcohol use disorder is a chronic condition that requires treatments to be effective in promoting abstinence from excessive alcohol consumption over time. Here, we assessed the effect of daily treatment with the GLP-1 receptor agonist Exendin-4 in an assay of relapse-like drinking in socially housed mice. Male C57BL/6NTac mice were allowed continuous access to alcohol without tastant in the home cage for 37days. Then, alcohol bottles were removed and Exendin-4 (1.5μg/kg/day) or saline was administered subcutaneously for 8days during alcohol deprivation. Treatment continued for 8 additional days after reintroducing access to alcohol. A high-precision automated fluid consumption system was used to monitor intake of alcohol and water, drinking kinetics, and locomotor activity. Exendin-4 prevented the deprivation-induced increase in alcohol intake observed in control mice, without significantly affecting total fluid intake, body weight, or locomotor activity. The reduced alcohol intake was caused by a protracted latency to the first drink of alcohol and a reduced number of drinking bouts, while bout size and duration were not affected. The effect was maintained undiminished throughout the treatment period. These findings support the possible use of GLP-1 receptor agonists in the treatment of alcohol use disorder.

Collaboration


Dive into the Ditte Dencker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pia Weikop

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jürgen Wess

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Molander

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge