Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Divino Vicente Silvério is active.

Publication


Featured researches published by Divino Vicente Silvério.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Abrupt increases in Amazonian tree mortality due to drought-fire interactions

Paulo M. Brando; Jennifer K. Balch; Daniel C. Nepstad; Douglas C. Morton; Francis E. Putz; Michael T. Coe; Divino Vicente Silvério; Marcia N. Macedo; Eric A. Davidson; Caroline Nóbrega; Ane Alencar; Britaldo Soares-Filho

Significance Climate change alone is unlikely to drive severe tropical forest degradation in the next few decades, but an alternative process associated with severe weather and forest fires is already operating in southeastern Amazonia. Recent droughts caused greatly elevated fire-induced tree mortality in a fire experiment and widespread regional forest fires that burned 5–12% of southeastern Amazon forests. These results suggest that feedbacks between fires and extreme climatic conditions could increase the likelihood of an Amazon forest “dieback” in the near-term. To secure the integrity of seasonally dry Amazon forests, efforts to end deforestation must be accompanied by initiatives that reduce the accidental spread of land management fires into neighboring forest reserves and effectively suppress forest fires when they start. Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW⋅m−1). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.


Global Change Biology | 2015

The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests

Yadvinder Malhi; Christopher E. Doughty; Gregory R. Goldsmith; Daniel B. Metcalfe; Cécile A. J. Girardin; Toby R. Marthews; Jhon del Aguila-Pasquel; Luiz E. O. C. Aragão; Alejandro Araujo-Murakami; Paulo M. Brando; Antonio Carlos Lola da Costa; Javier E. Silva-Espejo; Filio Farfán Amézquita; David Galbraith; Carlos A. Quesada; Wanderley Rocha; Norma Salinas-Revilla; Divino Vicente Silvério; Patrick Meir; Oliver L. Phillips

Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling.


Philosophical Transactions of the Royal Society B | 2013

Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses

Divino Vicente Silvério; Paulo M. Brando; Jennifer K. Balch; Francis E. Putz; Daniel C. Nepstad; Claudinei Oliveira-Santos; Mercedes M. C. Bustamante

Changes in climate and land use that interact synergistically to increase fire frequencies and intensities in tropical regions are predicted to drive forests to new grass-dominated stable states. To reveal the mechanisms for such a transition, we established 50 ha plots in a transitional forest in the southwestern Brazilian Amazon to different fire treatments (unburned, burned annually (B1yr) or at 3-year intervals (B3yr)). Over an 8-year period since the commencement of these treatments, we documented: (i) the annual rate of pasture and native grass invasion in response to increasing fire frequency; (ii) the establishment of Brachiaria decumbens (an African C4 grass) as a function of decreasing canopy cover and (iii) the effects of grass fine fuel on fire intensity. Grasses invaded approximately 200 m from the edge into the interiors of burned plots (B1yr: 4.31 ha; B3yr: 4.96 ha) but invaded less than 10 m into the unburned plot (0.33 ha). The probability of B. decumbens establishment increased with seed availability and decreased with leaf area index. Fine fuel loads along the forest edge were more than three times higher in grass-dominated areas, which resulted in especially intense fires. Our results indicate that synergies between fires and invasive C4 grasses jeopardize the future of tropical forests.


Global Change Biology | 2016

Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity

Mercedes M. C. Bustamante; Iris Roitman; T. Mitchell Aide; Ane Alencar; Liana O. Anderson; Luiz E. O. C. Aragão; Gregory P. Asner; Jos Barlow; Erika Berenguer; Jeffrey Q. Chambers; Marcos Heil Costa; Thierry Fanin; Laerte Guimarães Ferreira; Joice Ferreira; Michael Keller; William E. Magnusson; Lucia Morales-Barquero; Douglas C. Morton; Jean Pierre Henry Balbaud Ometto; Michael Palace; Carlos A. Peres; Divino Vicente Silvério; Susan E. Trumbore; Ima Célia Guimarães Vieira

Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation.


Environmental Research Letters | 2015

Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing

Divino Vicente Silvério; Paulo M. Brando; Marcia N. Macedo; Pieter S. A. Beck; Mercedes M. C. Bustamante; Michael T. Coe

Tropical deforestation changes the surface energy balance and water cycle, but how much change occurs strongly depends on the land uses that follow deforestation. Here, we quantify how recent (2000–2010) transitions among widespread land uses (i.e., forests, croplands, and pastures) altered the water and energy balance in the Xingu region of southeast Amazonia. Spatial-temporal analyses of multiple satellite data sets revealed that forest-to-crop and forest-to-pasture transitions decreased the net surface radiation (by 18% and 12%, respectively) and latent heat flux (32% and 24%), while increasing sensible heat flux (6% and 9%). Land use transitions during the 2000s reduced contemporaneous evapotranspiration (ET) in the Xingu region by 35 km3 and warmed the land surface temperature (LST) by 0.3 °C. Forest-to-pasture and forest-to-crop transitions accounted for most of the observed ET reduction (25.5 km3 and 7 km3, respectively) and LST increase (0.2 °C and 0.07 °C). Pasture-to-crop transitions reduced ET by an additional 2.5 km3 and increased LST by 0.03 °C. If land use had changed at a similar rate within the regions protected areas, ET would have decreased by another 4.7 km3 and the surface would have warmed an additional 0.5 °C. Forests thus play a key role in regulating regional climate in Amazonia, with protected areas able to attenuate regional climate change caused by land use changes. Our findings show how a major non-GHG forcing, in this case agricultural expansion, has significantly altered regional climate in southeastern Amazonia and how protected forests can mitigate such changes.


Plant Ecology & Diversity | 2014

Ecosystem productivity and carbon cycling in intact and annually burnt forest at the dry southern limit of the Amazon rainforest (Mato Grosso, Brazil)

Wanderley Rocha; Daniel B. Metcalfe; Christopher E. Doughty; Paulo M. Brando; Divino Vicente Silvério; Kate Halladay; Daniel Curtis Nepstad; Jennifer K. Balch; Yadvinder Malhi

Background: The impact of fire on carbon cycling in tropical forests is potentially large, but remains poorly quantified, particularly in the locality of the transition forests that mark the boundaries between humid forests and savannas. Aims: To present the first comprehensive description of the impact of repeated low intensity, understorey fire on carbon cycling in a semi-deciduous, seasonally dry tropical forest on infertile soil in south-eastern Amazonia. Methods: We compared an annually burnt forest plot with a control plot over a three-year period (2009–2011). For each plot we quantified the components of net primary productivity (NPP), autotrophic (R a) and heterotrophic respiration (R h), and estimated total plant carbon expenditure (PCE, the sum of NPP and R a) and carbon-use efficiency (CUE, the quotient of NPP/PCE). Results: Total NPP and R a were 15 and 4% lower on the burnt plot than on the control, respectively. Both plots were characterised by a slightly higher CUE of 0.36–0.39, compared to evergreen lowland Amazon forests. Conclusions: These measurements provide the first evidence of a distinctive pattern of carbon cycling within this transitional forest. Overall, regular understorey fire is shown to have little impact on ecosystem-level carbon fluxes.


Biota Neotropica | 2015

Surface fire drives short-term changes in the vegetative phenology of woody species in a Brazilian savanna

Divino Vicente Silvério; Oriales Rocha Pereira; Henrique Augusto Mews; Leonardo Maracahipes-Santos; Josias Oliveira dos Santos; Eddie Lenza

We evaluated the effects of fire on the vegetative phenological behavior (crown foliage cover, sprouting, mature and young leaves) of woody species at two sites in the Brazilian savanna, one of which had been accidentally burned. We used generalized additive mixed models to test the hypothesis that: 1) fire damages total foliage cover, thus leading to changes in vegetative phenological patterns. As this hypothesis was corroborated, we also tested whether 2) the damage caused by fire to the total crown foliage cover and mature leaves is greater in evergreen than in deciduous species, and 3) the negative effects of fire on vegetative phenology persist after the first fire-free year. The first two hypotheses were corroborated, but the third was not. Fire effects on total crown foliage cover and mature leaves were greatest during the first three months following the fire, and were significantly greater in evergreen species. For shoots and young leaves, the greatest differences found between three and seven months post-fire. On the other hand, no differences were observed in phenological events between burned and unburned sites in the second year post-fire, indicating that marked effects of the fire were only observed over a short period. Our results showed immediate negative effects on the vegetative phenophases, but also that these effects are transient, and cannot be discerned after the first fire-free year.


Tropical Conservation Science | 2017

The Forests of the Amazon and Cerrado Moderate Regional Climate and Are the Key to the Future

Michael T. Coe; Paulo M. Brando; Linda A. Deegan; Marcia N. Macedo; Christopher Neill; Divino Vicente Silvério

The role of tropical forests in climate is most often expressed in terms of the carbon they keep out of the atmosphere if deforestation is avoided or the carbon they remove from the atmosphere as they grow. The direct role of forests, particularly in the tropics, in maintaining low surface temperatures and relatively high precipitation has been underappreciated. Recent studies in the Brazilian agricultural frontier indicate that tropical deforestation, for pasture and crop production, has led to significant regional climate change in the last 40 years of a scale much larger than that attributed to the carbon released from deforestation. Deforestation reduces net surface radiation and evapotranspiration, thus increasing sensible heat flux and land surface temperature. In Mato Grosso state, the temperature of the forested Xingu Indigenous Park is 3℃ cooler than the surrounding mosaic of pasturelands, croplands, and remaining forest fragments. In the neighboring state of Rondônia, rainfall has significantly decreased and the dry season lengthened as deforestation occurred. Numerical model studies strongly suggest that Brazil’s agricultural frontier will be much warmer and dryer in coming decades as greenhouse gas concentrations increase. Thus, in Brazil, it is becoming clear that, because of their capacity to moderate regional climate, preserving tropical forests will be a key component of mitigating exogenously driven future climate change.


Journal of Ecology | 2018

Fire, fragmentation, and windstorms: a recipe for tropical forest degradation

Divino Vicente Silvério; Paulo M. Brando; Mercedes M. C. Bustamante; Francis E. Putz; Daniel Magnabosco Marra; Shaun R. Levick; Susan E. Trumbore

1Instituto de Pesquisa Ambiental da Amazônia, Mato Grosso, Brasil; 2Departamento de Ecologia, Universidade de Brasília, Brasília, Brazil; 3The Woods Hole Research Center, Falmouth, Massachusetts; 4Department of Biology, University of Florida, Gainesville, Florida; 5Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany; 6Laboratório de Manejo Florestal, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil; 7AG Spezielle Botanik und Funktionelle Biodiversität, Universität Leipzig, Leipzig, Germany and 8CSIRO Land and Water, Winnellie, NT, Australia


Archive | 2016

The Hydrology and Energy Balance of the Amazon Basin

Michael T. Coe; Marcia N. Macedo; Paulo M. Brando; Paul Lefebvre; Prajjwal Panday; Divino Vicente Silvério

The Amazon basin is the planet’s largest and most intense land-based centre of precipitation. This convective system is driven by high net surface radiation, which is dissipated via fluxes of latent heat and sensible heat. Over the long term (1 year or greater), incoming precipitation over the basin is balanced by evaporative fluxes of water to the atmosphere and discharge, which returns excess water to the oceans. The temporal variability of this cycle is largely controlled by oscillations of tropical Pacific and North Atlantic sea surface temperatures, while synergies between climate and forest structure and functioning control much of the observed spatial variability. Field observations and numerical models indicate that large-scale deforestation has decreased net surface radiation and evapotranspiration, increasing sensible heat flux, water yield, and stream discharge in many locations, particularly in the agricultural frontier of southeastern Amazonia. In the future, increasing atmospheric greenhouse gases are expected to increase temperatures, drought frequency, and drought intensity in the Amazon, causing further changes to the cycling of energy and water in the basin.

Collaboration


Dive into the Divino Vicente Silvério's collaboration.

Top Co-Authors

Avatar

Paulo M. Brando

Woods Hole Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer K. Balch

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Michael T. Coe

Woods Hole Research Center

View shared research outputs
Top Co-Authors

Avatar

Eddie Lenza

Universidade do Estado de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcia N. Macedo

Woods Hole Research Center

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Nepstad

Woods Hole Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge