Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Divya Prakash Gnanadhas is active.

Publication


Featured researches published by Divya Prakash Gnanadhas.


Journal of Antimicrobial Chemotherapy | 2013

Chitosan–dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella

Divya Prakash Gnanadhas; Midhun Ben Thomas; Monalisha Elango; Ashok M. Raichur; Dipshikha Chakravortty

OBJECTIVES The ability to target conventional drugs efficiently inside cells to kill intraphagosomal bacteria has been a major hurdle in treatment of infective diseases. We aimed to develop an efficient drug delivery system for combating infection caused by Salmonella, a well-known intracellular and intraphagosomal pathogen. Chitosan-dextran sulphate (CD) nanocapsules were assessed for their efficiency in delivering drugs against Salmonella. METHODS The CD nanocapsules were prepared using the layer-by-layer method and loaded with ciprofloxacin or ceftriaxone. Antibiotic-loaded nanocapsules were analysed in vitro for their ability to enter epithelial and macrophage cells to kill Salmonella. In vivo pharmacokinetics and organ distribution studies were performed to check the efficiency of the delivery system. The in vivo antibacterial activity of free antibiotic and antibiotic loaded into nanocapsules was tested in a murine salmonellosis model. RESULTS In vitro and in vivo experiments showed that this delivery system can be used effectively to clear Salmonella infection. CD nanocapsules were successfully employed for efficient targeting and killing of the intracellular pathogen at a dosage significantly lower than that of the free antibiotic. The increased retention time of ciprofloxacin in the blood and organs when it was delivered by CD nanocapsules compared with the conventional routes of administration may be the reason underlying the requirement for a reduced dosage and frequency of antibiotic administration. CONCLUSIONS CD nanocapsules can be used as an efficient drug delivery system to treat intraphagosomal pathogens, especially Salmonella infection. This delivery system might be used effectively for other vacuolar pathogens including Mycobacteria, Brucella and Legionella.


Expert Opinion on Investigational Drugs | 2013

Biocides - resistance, cross-resistance mechanisms and assessment

Divya Prakash Gnanadhas; Sandhya A. Marathe; Dipshikha Chakravortty

Importance of the field: Antibiotic resistance in bacterial pathogens has increased worldwide leading to treatment failures. Concerns have been raised about the use of biocides as a contributing factor to the risk of antimicrobial resistance (AMR) development. In vitro studies demonstrating increase in resistance have often been cited as evidence for increased risks. It is therefore important to understand the mechanisms of resistance employed by bacteria toward biocides used in consumer products and their potential to impart cross-resistance to therapeutic antibiotics. Areas covered: In this review, the mechanisms of resistance and cross-resistance reported in the literature toward biocides commonly used in consumer products are summarized. The physiological and molecular techniques used in describing and examining these mechanisms are reviewed and application of these techniques for systematic assessment of biocides for their potential to develop resistance and/or cross-resistance is discussed. Expert opinion: The guidelines in the usage of biocides in household or industrial purpose should be monitored and regulated to avoid the emergence of any MDR strains. The genetic and molecular methods to monitor the resistance development to biocides should be developed and included in preclinical and clinical studies.


Virulence | 2012

Salmonella enterica serovars Typhimurium and Typhi as model organisms Revealing paradigm of host-pathogen interactions

Preeti Garai; Divya Prakash Gnanadhas; Dipshikha Chakravortty

The lifestyle of intracellular pathogens has always questioned the skill of a microbiologist in the context of finding the permanent cure to the diseases caused by them. The best tool utilized by these pathogens is their ability to reside inside the host cell, which enables them to easily bypass the humoral immunity of the host, such as the complement system. They further escape from the intracellular immunity, such as lysosome and inflammasome, mostly by forming a protective vacuole-bound niche derived from the host itself. Some of the most dreadful diseases are caused by these vacuolar pathogens, for example, tuberculosis by Mycobacterium or typhoid fever by Salmonella. To deal with such successful pathogens therapeutically, the knowledge of a host-pathogen interaction system becomes primarily essential, which further depends on the use of a model system. A well characterized pathogen, namely Salmonella, suits the role of a model for this purpose, which can infect a wide array of hosts causing a variety of diseases. This review focuses on various such aspects of research on Salmonella which are useful for studying the pathogenesis of other intracellular pathogens.


International Journal of Nanomedicine | 2013

Intracellular delivery of doxorubicin encapsulated in novel pH-responsive chitosan/heparin nanocapsules

Midhun Ben Thomas; Krishna Radhakrishnan; Divya Prakash Gnanadhas; Dipshikha Chakravortty; Ashok M. Raichur

A novel polyelectrolyte nanocapsule system composed of biopolymers, chitosan and heparin has been fabricated by the layer-by-layer technique on silica nanoparticles followed by dissolution of the silica core. The nanocapsules were of the size range 200 ± 20 nm and loaded with the positively charged anticancer drug doxorubicin with an efficiency of 89%. The loading of the drug into the capsule happens by virtue of the pH-responsive property of the capsule wall, which is determined by the pKa of the polyelectrolytes. As the pH is varied, about 64% of the drug is released in acidic pH while 77% is released in neutral pH. The biocompatibility, efficiency of drug loading, and enhanced bioavailability of the capsule system was confirmed by MTT assay and in vivo biodistribution studies.


Expert Opinion on Biological Therapy | 2011

Multifaceted roles of curcumin: two sides of a coin!

Sandhya A. Marathe; Ishani Dasgupta; Divya Prakash Gnanadhas; Dipshikha Chakravortty

Introduction: Curcumin has been a front-line topic of mainstream scientific research for a variety of diseases from cancer to Alzheimers to infectious diseases. Curcumin suppresses the type 1 immune response, which might lead to alleviation of type 1 immune response disorders. However, the inhibition of type 1 immune response might invite infections with opportunistic pathogens. Considering its low bioavailability, several curcumin derivatives have been designed to improve its functionality. Areas covered: This is a consolidated review which aims to compare and contrast diverse aspects of curcumin in variety of diseases. The intricate underlying mechanisms and the functional determinants of curcumin are discussed. Expert opinion: Curcumin being considered as a spicy panacea, is not a remedy for all diseases. However, its ability to act differentially as an anti-oxidant or pro-oxidant akin to that of a double-edged sword/friend turning foe can be either beneficial or harmful for the host. It exhibits anti-oxidant properties at concentrations achievable in the body, making the host vulnerable to infections due to the suppression of innate immune responses. With the increase in knowledge of its functional groups, production of analogues of curcumin is underway to enhance its bioavailability and hence its therapeutic potency.


Scientific Reports | 2015

Successful treatment of biofilm infections using shock waves combined with antibiotic therapy.

Divya Prakash Gnanadhas; Monalisha Elango; S. Janardhanraj; C. S. Srinandan; Akshay Datey; Richard A. Strugnell; Jagadeesh Gopalan; Dipshikha Chakravortty

Many bacteria secrete a highly hydrated framework of extracellular polymer matrix on suitable substrates and embed within the matrix to form a biofilm. Bacterial biofilms are observed on many medical devices, endocarditis, periodontitis and lung infections in cystic fibrosis patients. Bacteria in biofilm are protected from antibiotics and >1,000 times of the minimum inhibitory concentration may be required to treat biofilm infections. Here, we demonstrated that shock waves could be used to remove Salmonella, Pseudomonas and Staphylococcus biofilms in urinary catheters. The studies were extended to a Pseudomonas chronic pneumonia lung infection and Staphylococcus skin suture infection model in mice. The biofilm infections in mice, treated with shock waves became susceptible to antibiotics, unlike untreated biofilms. Mice exposed to shock waves responded to ciprofloxacin treatment, while ciprofloxacin alone was ineffective in treating the infection. These results demonstrate for the first time that, shock waves, combined with antibiotic treatment can be used to treat biofilm infection on medical devices as well as in situ infections.


RSC Advances | 2014

Dual enzyme responsive and targeted nanocapsules for intracellular delivery of anticancer agents

Krishna Radhakrishnan; Jasaswini Tripathy; Divya Prakash Gnanadhas; Dipshikha Chakravortty; Ashok M. Raichur

We report the fabrication of dual enzyme responsive hollow nanocapsules which can be targeted to deliver anticancer agents specifically inside cancer cells. The enzyme responsive elements, integrated in the nanocapsule walls, undergo degradation in the presence of either trypsin or hyaluronidase leading to the release of encapsulated drug molecules. These nanocapsules, which were crosslinked and functionalised with folic acid, showed minimal drug leakage when kept in pH 7.4 PBS buffer, but released the drug molecules at a rapid rate in the presence of either one of the triggering enzymes. Studies on cellular interactions of these nanocapsules revealed that doxorubicin loaded nanocapsules were taken up by cervical cancer cells via folic acid receptor medicated endocytosis. Interestingly the nanocapsules were able to disintegrate inside the cancer cells and release doxorubicin which then migrated into the nucleus to induce cell death. This study indicates that these nanocapsules fabricated from biopolymers can serve as an excellent platform for targeted intracellular drug delivery to cancer cells.


Scientific Reports | 2015

Chronic lung infection by Pseudomonas aeruginosa biofilm is cured by L-Methionine in combination with antibiotic therapy

Divya Prakash Gnanadhas; Monalisha Elango; Akshay Datey; Dipshikha Chakravortty

Bacterial biofilms are associated with 80–90% of infections. Within the biofilm, bacteria are refractile to antibiotics, requiring concentrations >1,000 times the minimum inhibitory concentration. Proteins, carbohydrates and DNA are the major components of biofilm matrix. Pseudomonas aeruginosa (PA) biofilms, which are majorly associated with chronic lung infection, contain extracellular DNA (eDNA) as a major component. Herein, we report for the first time that L-Methionine (L-Met) at 0.5 μM inhibits Pseudomonas aeruginosa (PA) biofilm formation and disassembles established PA biofilm by inducing DNase expression. Four DNase genes (sbcB, endA, eddB and recJ) were highly up-regulated upon L-Met treatment along with increased DNase activity in the culture supernatant. Since eDNA plays a major role in establishing and maintaining the PA biofilm, DNase activity is effective in disrupting the biofilm. Upon treatment with L-Met, the otherwise recalcitrant PA biofilm now shows susceptibility to ciprofloxacin. This was reflected in vivo, in the murine chronic PA lung infection model. Mice treated with L-Met responded better to antibiotic treatment, leading to enhanced survival as compared to mice treated with ciprofloxacin alone. These results clearly demonstrate that L-Met can be used along with antibiotic as an effective therapeutic against chronic PA biofilm infection.


Frontiers in Microbiology | 2015

Infiltration of Matrix-Non-producers Weakens the Salmonella Biofilm and Impairs Its Antimicrobial Tolerance and Pathogenicity

Chakravarthy S. Srinandan; Monalisha Elango; Divya Prakash Gnanadhas; Dipshikha Chakravortty

Bacterial biofilms display a collective lifestyle, wherein the cells secrete extracellular polymeric substances (EPS) that helps in adhesion, aggregation, stability, and to protect the bacteria from antimicrobials. We asked whether the EPS could act as a public good for the biofilm and observed that infiltration of cells that do not produce matrix components weakened the biofilm of Salmonella enterica serovar Typhimurium. EPS production was costly for the producing cells, as indicated by a significant reduction in the fitness of wild type (WT) cells during competitive planktonic growth relative to the non-producers. Infiltration frequency of non-producers in the biofilm showed a concomitant decrease in overall productivity. It was apparent in the confocal images that the non-producing cells benefit from the EPS produced by the Wild Type (WT) to stay in the biofilm. The biofilm containing non-producing cells were more significantly susceptible to sodium hypochlorite and ciprofloxacin treatment than the WT biofilm. Biofilm infiltrated with non-producers delayed the pathogenesis, as tested in a murine model. The cell types were spatially assorted, with non-producers being edged out in the biofilm. However, cellulose was found to act as a barrier to keep the non-producers away from the WT microcolony. Our results show that the infiltration of non-cooperating cell types can substantially weaken the biofilm making it vulnerable to antibacterials and delay their pathogenesis. Cellulose, a component of EPS, was shown to play a pivotal role of acting as the main public good, and to edge-out the non-producers away from the cooperating microcolony.


Virulence | 2012

Acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella

Uday Sankar Allam; M. Gopala Krishna; Minakshi Sen; Rony Thomas; Amit Lahiri; Divya Prakash Gnanadhas; Dipshikha Chakravortty

During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the ΔSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The ΔSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the ΔSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the ΔSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.

Collaboration


Dive into the Divya Prakash Gnanadhas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monalisha Elango

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ashok M. Raichur

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Jagadeesh Gopalan

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Akshay Datey

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Midhun Ben Thomas

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

S. Janardhanraj

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Uday Sankar Allam

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

M. Gopala Krishna

Indian Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge