Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Divya Tej Sowpati is active.

Publication


Featured researches published by Divya Tej Sowpati.


Scientific Reports | 2016

Genome-wide non-CpG methylation of the host genome during M. tuberculosis infection

Garima Sharma; Divya Tej Sowpati; Prakruti Singh; Mehak Zahoor Khan; Rakesh Ganji; Sandeep Upadhyay; Sharmistha Banerjee; Vinay Kumar Nandicoori; Sanjeev Khosla

A mammalian cell utilizes DNA methylation to modulate gene expression in response to environmental changes during development and differentiation. Aberrant DNA methylation changes as a correlate to diseased states like cancer, neurodegenerative conditions and cardiovascular diseases have been documented. Here we show genome-wide DNA methylation changes in macrophages infected with the pathogen M. tuberculosis. Majority of the affected genomic loci were hypermethylated in M. tuberculosis infected THP1 macrophages. Hotspots of differential DNA methylation were enriched in genes involved in immune response and chromatin reorganization. Importantly, DNA methylation changes were observed predominantly for cytosines present in non-CpG dinucleotide context. This observation was consistent with our previous finding that the mycobacterial DNA methyltransferase, Rv2966c, targets non-CpG dinucleotides in the host DNA during M. tuberculosis infection and reiterates the hypothesis that pathogenic bacteria use non-canonical epigenetic strategies during infection.


Mechanisms of Development | 2008

An intronic DNA sequence within the mouse Neuronatin gene exhibits biochemical characteristics of an ICR and acts as a transcriptional activator in Drosophila.

Divya Tej Sowpati; Devi Thiagarajan; Sudhish Sharma; Hina Sultana; Rosalind Margaret John; Azim Surani; Rakesh K. Mishra; Sanjeev Khosla

Imprinting control regions (ICRs) are domains within imprinted loci that are essential for their establishment and maintenance. Imprinted loci can extend over several megabases, encompass both maternally and paternally-expressed genes and exhibit multiple and complex epigenetic modifications including large regions of allele-specific DNA methylation. Differential chromatin organisation has also been observed within imprinted loci but is restricted to the ICRs. In this study we report the identification of a novel imprinting control region for the mouse Neuronatin gene. This biochemically defined putative ICR, present within its 250 bp second intron, functions as transcriptional activator in Drosophila. This is unlike other known ICRs which have been shown to function as transcriptional silencers. Furthermore, at the endogenous locus, the activating signal from the ICR extends to the Neuronatin promoter via allele-specific unidirectional nucleosomal positioning. Our results support the proposal that the Neuronatin locus employs the most basic mechanism for establishing allele-specific gene expression and could provide the foundation for the multiplex arrangements reported at more complex loci.


PLOS ONE | 2016

Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights

Amitha Sampath Kumar; Divya Tej Sowpati; Rakesh K. Mishra

Microsatellites or simple sequence repeats (SSR) are abundant, highly diverse stretches of short DNA repeats present in all genomes. Tandem mono/tri/hexanucleotide repeats in the coding regions contribute to single amino acids repeats (SAARs) in the proteome. While SSRs in the coding region always result in amino acid repeats, a majority of SAARs arise due to a combination of various codons representing the same amino acid and not as a consequence of SSR events. Certain amino acids are abundant in repeat regions indicating a positive selection pressure behind the accumulation of SAARs. By analysing 22 proteomes including the human proteome, we explored the functional and structural relationship of amino acid repeats in an evolutionary context. Only ~15% of repeats are present in any known functional domain, while ~74% of repeats are present in the disordered regions, suggesting that SAARs add to the functionality of proteins by providing flexibility, stability and act as linker elements between domains. Comparison of SAAR containing proteins across species reveals that while shorter repeats are conserved among orthologs, proteins with longer repeats, >15 amino acids, are unique to the respective organism. Lysine repeats are well conserved among orthologs with respect to their length and number of occurrences in a protein. Other amino acids such as glutamic acid, proline, serine and alanine repeats are generally conserved among the orthologs with varying repeat lengths. These findings suggest that SAARs have accumulated in the proteome under positive selection pressure and that they provide flexibility for optimal folding of functional/structural domains of proteins. The insights gained from our observations can help in effective designing and engineering of proteins with novel features.


Mechanisms of Development | 2015

Expansion of the polycomb system and evolution of complexity.

Divya Tej Sowpati; Senthilkumar Ramamoorthy; Rakesh K. Mishra

Polycomb group (PcG) proteins regulate and maintain expression pattern of genes set early during development. Although originally isolated as regulators of homeotic genes, PcG members play a key role in epigenetic mechanisms that maintain the expression state of a large number of genes. All members of the two polycomb repressive complexes (PRC1 and PRC2) are conserved during evolution and while invertebrates generally have one gene for each of these, vertebrates have multiple homologues of them. It remains unclear, however, if different vertebrate PcG homologues have distinct or overlapping functions. We have identified and compared the sequence of PcG homologues in various organisms to analyze similarities and differences that shaped the evolutionary history of these proteins. Comparative analysis of the sequences led to the identification of several novel and signature motifs in the vertebrate homologues of these proteins, which can be directly used to pick respective homologues. Our analysis shows that PcG is an ancient gene group dating back to pre-bilaterian origin that has not only been conserved but also expanded during the evolution of complexity. The presence of unique motifs in each paralogue and its conservation for more than 500 Ma indicates their functional relevance and probable unique role. Although this does not rule out completely any overlapping function, our finding that these homologues only minimally overlap in their nuclear localization suggests that each PcG homologue has distinct function. We further propose distinct complex formation by the PcG members. Taken together, our studies suggest non-redundant and specific role of multiple homologues of PcG proteins in vertebrates and indicate major expansion event preceded by emergence of vertebrates that contributed as enhanced epigenetic resource to the evolution of complexity.


Genomics data | 2014

A ChIP-on-chip tiling array approach detects functional histone-free regions associated with boundaries at vertebrate HOX genes.

Surabhi Srivastava; Divya Tej Sowpati; Hita Sony Garapati; Deepika Puri; Jyotsna Dhawan; Rakesh K. Mishra

Hox genes impart segment identity to body structures along the anterior–posterior axis and are crucial for proper development. A unique feature of the Hox loci is the collinearity between the gene position within the cluster and its spatial expression pattern along the body axis. However, the mechanisms that regulate collinear patterns of Hox gene expression remain unclear, especially in higher vertebrates. We recently identified novel histone-free regions (HFRs) that can act as chromatin boundary elements demarcating successive murine Hox genes and help regulate their precise expression domains (Srivastava et al., 2013). In this report, we describe in detail the ChIP-chip analysis strategy associated with the identification of these HFRs. We also provide the Perl scripts for HFR extraction and quality control analysis for this custom designed tiling array dataset.


Genome Biology and Evolution | 2017

MSDB: A Comprehensive Database of Simple Sequence Repeats

Akshay Kumar Avvaru; Saketh Saxena; Divya Tej Sowpati; Rakesh K. Mishra

Abstract Microsatellites, also known as Simple Sequence Repeats (SSRs), are short tandem repeats of 1–6 nt motifs present in all genomes, particularly eukaryotes. Besides their usefulness as genome markers, SSRs have been shown to perform important regulatory functions, and variations in their length at coding regions are linked to several disorders in humans. Microsatellites show a taxon-specific enrichment in eukaryotic genomes, and some may be functional. MSDB (Microsatellite Database) is a collection of >650 million SSRs from 6,893 species including Bacteria, Archaea, Fungi, Plants, and Animals. This database is by far the most exhaustive resource to access and analyze SSR data of multiple species. In addition to exploring data in a customizable tabular format, users can view and compare the data of multiple species simultaneously using our interactive plotting system. MSDB is developed using the Django framework and MySQL. It is freely available at http://tdb.ccmb.res.in/msdb.


BMC Bioinformatics | 2017

C-State: an interactive web app for simultaneous multi-gene visualization and comparative epigenetic pattern search

Divya Tej Sowpati; Surabhi Srivastava; Jyotsna Dhawan; Rakesh K. Mishra

BackgroundComparative epigenomic analysis across multiple genes presents a bottleneck for bench biologists working with NGS data. Despite the development of standardized peak analysis algorithms, the identification of novel epigenetic patterns and their visualization across gene subsets remains a challenge.ResultsWe developed a fast and interactive web app, C-State (Chromatin-State), to query and plot chromatin landscapes across multiple loci and cell types. C-State has an interactive, JavaScript-based graphical user interface and runs locally in modern web browsers that are pre-installed on all computers, thus eliminating the need for cumbersome data transfer, pre-processing and prior programming knowledge.ConclusionsC-State is unique in its ability to extract and analyze multi-gene epigenetic information. It allows for powerful GUI-based pattern searching and visualization. We include a case study to demonstrate its potential for identifying user-defined epigenetic trends in context of gene expression profiles.


bioRxiv | 2018

Patterns of microsatellite distribution reflect the evolution of biological complexity

Surabhi Surabhi; Akshay Kumar Avvaru; Divya Tej Sowpati; Rakesh K. Mishra

Microsatellites, also known as Simple Sequence Repeats (SSRs), are evolutionarily conserved repeat elements distributed non-randomly in all genomes. Many studies have investigated their pattern of occurrence in order to understand their role, but their identification has largely been non-exhaustive and limited to a few related species or model organisms. Here, we identify ~685 million microsatellites from 719 eukaryotes and analyze their evolutionary trends from protists to mammals. We document novel patterns uniquely demarcating closely related species, including in pathogens like Leishmania as well as in higher organisms such as Drosophila, birds, primates, and cereal crops. The distribution of SSRs in coding and non-coding regions reveals taxon-specific variations in their exonic, intronic and intergenic densities. We also show that specific SSRs accumulate at longer lengths in higher organisms indicating an evolutionary selection pressure. In general, we observe greater constraints in the SSR composition of multicellular organisms with complex cell types, while simpler organisms show more diversity. The conserved microsatellite trends and species-specific signatures identified in this study closely mirror phylogenetic relationships and we hypothesize that SSRs are integral components in speciation and the evolution of organismal complexity. The microsatellite dataset generated in this work provides a large number of candidates for functional analysis and unparalleled scope for understanding their roles across the evolutionary landscape.


bioRxiv | 2018

Long-read genome sequence and assembly of Leptopilina boulardi: a specialist Drosophila parasitoid

Shagufta Khan; Divya Tej Sowpati; Rakesh K. Mishra

Background Leptopilina boulardi is a specialist parasitoid belonging to the order Hymenoptera, which attacks the larval stages of Drosophila. The Leptopilina genus has enormous value in the biological control of pests as well as in understanding several aspects of host-parasitoid biology. However, none of the members of Figitidae family has their genomes sequenced. In order to improve the understanding of the parasitoid wasps by generating genomic resources, we sequenced the whole genome of L. boulardi. Findings Here, we report a high-quality genome of L. boulardi, assembled from 70Gb of Illumina reads and 10.5Gb of PacBio reads, forming a total coverage of 230X. The 375Mb draft genome has an N50 of 275Kb with 6315 scaffolds >500bp, and encompasses >95% complete BUSCOs. The GC% of the genome is 28.26%, and RepeatMasker identified 868105 repeat elements covering 43.9% of the assembly. A total of 25259 protein-coding genes were predicted using a combination of ab-initio and RNA-Seq based methods, with an average gene size of 3.9Kb. 78.11% of the predicted genes could be annotated with at least one function. Conclusion Our study provides a highly reliable assembly of this parasitoid wasp, which will be a valuable resource to researchers studying parasitoids. In particular, it can help delineate the host-parasitoid mechanisms that are part of the Drosophila – Leptopilina model system.


Genomics | 2018

Epigenomic and genomic landscape of Drosophila melanogaster heterochromatic genes

Parna Saha; Divya Tej Sowpati; Rakesh K. Mishra

Heterochromatin is associated with transcriptional repression. In contrast, several genes in the pericentromeric regions of Drosophila melanogaster are dependent on this heterochromatic environment for their expression. Here we present a comprehensive analysis of the epigenetic landscape of heterochromatic genes across all the developmental stages of Drosophila using the available histone modification and expression data from modENCODE. We find that heterochromatic genes exhibit combinations of active and inactive histone marks that correspond to their level of expression during development. We also show that Nuclear Matrix Associated Regions (MARs) are prominently present in the intergenic regions of heterochromatic genes during embryonic stages suggesting their plausible role in pericentromeric genome organization. Taken together, our meta-analysis of the various genomic datasets suggest that the epigenomic and genomic landscape of the heterochromatic genes are distinct which could be contributing to their unusual regulatory features as opposed to the surrounding heterochromatin, which is repressive in nature.

Collaboration


Dive into the Divya Tej Sowpati's collaboration.

Top Co-Authors

Avatar

Rakesh K. Mishra

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Akshay Kumar Avvaru

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Jyotsna Dhawan

National Centre for Biological Sciences

View shared research outputs
Top Co-Authors

Avatar

Sanjeev Khosla

Centre for DNA Fingerprinting and Diagnostics

View shared research outputs
Top Co-Authors

Avatar

Surabhi Srivastava

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Amitha Sampath Kumar

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hina Sultana

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Parna Saha

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Rakesh Ganji

University of Hyderabad

View shared research outputs
Researchain Logo
Decentralizing Knowledge