Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dixon J. Woodbury is active.

Publication


Featured researches published by Dixon J. Woodbury.


Cell Biochemistry and Biophysics | 2006

SNARE complex regulation by phosphorylation.

Deborah A. Snyder; Marie Kelly; Dixon J. Woodbury

SNAREs (soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptors) are ubiquitous proteins that direct vesicular trafficking and exocytosis. In neurons, SNAREs act to mediate release of neurotransmitters, which is a carefully regulated process. Calcium influx has long been shown to be the key trigger of release. However, calcium alone cannot regulate the degree of vesicle content release. For example, only a limited number of docked vesicles releases neurotransmitters when calcium entry occurs; this suggests that exocytosis is regulated by other factors besides calcium influx. Regulation of the degree of release is best explained by looking at the many enzymatic proteins that interact with the SNARE complex. These proteins have been hypothesized to regulate the formation, stability, or disassembly of the SNARE complex and therefore may regulate neurotransmitter release. One group of enzymatic regulators is the protein kinases. These proteins phosphorylate sites on both SNARE proteins and proteins that interact with SNARE proteins. Recent research has identified some of the specific effects that phosphorylation (or dephosphorylation) at these sites can produce. Additionally, palmitoylation of SNAP-25, regulates the localization, and hence activity of this key SNARE protein. This review focuses on the location and effects of phosphorylation on SNARE regulation.


Biophysical Journal | 1988

Role of channels in the fusion of vesicles with a planar bilayer.

Dixon J. Woodbury; James E. Hall

Fluorescence microscopy combined with electrical conductance measurements were used to assess fusion of phospholipid vesicles with a planar bilayer. Large unilamellar vesicles (0.5-3 microns diam.) filled with the fluorescent dye, calcein, were made both with or without porin channels. Vesicle-bilayer fusion was induced by increasing the osmolarity of the solution on the side of the bilayer to which the vesicles were added. Fusion was detected optically by the fluorescent flash due to release of vesicular contents. Although both porin-containing and porin-free vesicles give the same kind of flash upon content release, the conditions necessary to induce release are very different. Only 4% of the porin-free vesicles fuse (release their contents) when subjected to 3 M urea. However, the same conditions induce 53% of the porin-containing vesicles to fuse and most of these fusions occur at a lower osmolarity ([urea] less than 400 mM). Thus channels greatly enhance fusion in this model system. A physical model based on the postulate that fusion is induced by an increase in surface tension, predicts that three conditions are necessary for fusion in this system: (a) an open channel in the vesicle membrane, (b) an osmotic gradient across the bilayer, and (c) the vesicle in contact with the planar membrane. These are the conditions that experimentally produce fusion in the model system.


Journal of The Autonomic Nervous System | 1997

Activation of P2x-purinoceptors in the nucleus tractus solitarius elicits differential inhibition of lumbar and renal sympathetic nerve activity

Tadeusz J. Scislo; Robert A. Augustyniak; Robin A. Barraco; Dixon J. Woodbury; Donal S. O'Leary

Activation of P2x-purinoceptors in the nucleus tractus solitarius (NTS) via microinjection of alpha,beta-methylene ATP (alpha,beta-MeATP) elicits large dose-dependent decreases in mean arterial pressure (MAP) and heart rate (HR) and preferential dilation of the iliac vascular bed in comparison to renal and mesenteric vascular beds. We investigated whether sympathoinhibition contributes to the depressor responses and whether differential changes in regional sympathetic output occur. In 43 chloralose/urethane anesthetized male Sprague-Dawley rats, MAP, HR, renal (RSNA) and lumbar sympathetic nerve activity (LSNA) were recorded. Data were analyzed as both the maximum decrease and the integral of the decrease over the duration of the depressor response. Microinjection of alpha,beta-MeATP (25 and 100 pmol in 50 nl volume) into the subpostremal NTS caused significant and dose-dependent decreases in MAP, HR, RSNA and LSNA. However, the changes in RSNA were significantly greater than those observed in LSNA for both doses and both methods of analysis of data (maximum responses in delta %: 84 +/- 3 vs 62 +/- 4, and 93 +/- 3 vs 74 +/- 4 for low and high dose of alpha,beta-MeATP, respectively; integral responses in delta % x min: 32 +/- 4 vs 18 +/- 3 and 179 +/- 7 vs 134 +/- 14 for low and high dose of alpha,beta-MeATP, respectively). Blockade of P2-purinoceptors in the NTS by the specific P2-receptor antagonist suramin abolished responses to 100 pmol alpha,beta-MeATP and microinjections of vehicle did not alter neural nor hemodynamic parameters. We conclude that activation of P2x-purinoceptors in the NTS inhibits sympathetic nerve activity and evokes differential regional sympathetic responses. However, differential sympathoinhibition does not explain differential vascular responses to the activation of P2x-purinoceptors in the NTS.


Journal of Liposome Research | 2006

Reducing Liposome Size with Ultrasound: Bimodal Size Distributions

Dixon J. Woodbury; Eric S. Richardson; Aaron W. Grigg; Rodney D. Welling; Brian H. Knudson

Sonication is a simple method for reducing the size of liposomes. We report the size distributions of liposomes as a function of sonication time using three different techniques. Liposomes, mildly sonicated for just 30 sec, had bimodal distributions when surface-weighted with modes at about 140 and 750 nm. With extended sonication, the size distribution remains bimodal but the average diameter of each population decreases and the smaller population becomes more numerous. Independent measurements of liposome size using Dynamic Light Scattering (DLS), transmission electron microscopy (TEM), and the nystatin/ergosterol fusion assay all gave consistent results. The bimodal distribution (even when number-weighted) differs from the Weibull distribution commonly observed for liposomes sonicated at high powers over long periods of time and suggests that a different mechanism may be involved in mild sonication. The observations are consistent with the following mechanism for decreasing liposome size. During ultrasonic irradiation, cavitation, caused by oscillating microbubbles, produces shear fields. Large liposomes that enter these fields form long tube-like appendages that can pinch-off into smaller liposomes. This proposed mechanism is consistent with colloidal theory and the observed behavior of liposomes in shear fields.


The Journal of Membrane Biology | 1989

Pure lipid vesicles can induce channel-like conductances in planar bilayers.

Dixon J. Woodbury

SummaryTypical channel-like current fluctuations were observed in planar lipid bilayers following brief exposure to large concentrations of lipid vesiclesdevoid of protein. Vesicles, formed by sonication of pure lipids suspended in 150mm salt solutions, were ejected ∼0.5 mm from a planar bilayer with a pipette. Over the next several minutes the bilayer conductance changed in ways usually considered to be indicative of reconstituted protein channels including step conductance changes (both up and down), flickering, ion selectivity, and inactivation. This observation demonstrates the need for caution in interpreting conductance changes which occur following ejection of channel-containing vesicles near a membrane.


Biophysical Journal | 1996

Ion channels from synaptic vesicle membrane fragments reconstituted into lipid bilayers.

Marie Kelly; Dixon J. Woodbury

Cholinergic synaptic vesicles were isolated from the electric organ of Torpedo californica. Vesicle membrane proteins were reconstituted into planar lipid bilayers by the nystatin/ergosterol fusion technique. After fusion, a variety of ion channels were observed. Here we identify four channels and describe two of them in detail. The two channels share a conductance of 13 pS. The first is anion selective and strongly voltage dependent, with a 50% open probability at membrane potentials of -15 mV. The second channel is slightly cation selective and voltage independent. It has a high open probability and a subconductance state. A third channel has a conductance of 4-7 pS, similar to the subconductance state of the second channel. This channel is fairly nonselective and has gating kinetics different from those of the cation channel. Finally, an approximately 10-pS, slightly cation selective channel was also observed. The data indicate that there are one or two copies of each of the above channels in every synaptic vesicle, for a total of six channels per vesicle. These observations confirm the existence of ion channels in synaptic vesicle membranes. It is hypothesized that these channels are involved in vesicle recycling and filling.


Cell Biology International | 2000

THE t-SNARE SYNTAXIN IS SUFFICIENT FOR SPONTANEOUS FUSION OF SYNAPTIC VESICLES TO PLANAR MEMBRANES

Dixon J. Woodbury; Kathie Rognlien

Vesicular trafficking and exocytosis are directed by the complementary interaction of membrane proteins that together form the SNARE complex. This complex is composed of proteins in the vesicle membrane (v‐SNAREs) that intertwine with proteins of the target membrane (t‐SNAREs). Here we show that modified synaptic vesicles (mSV), containing v‐SNAREs, spontaneously fuse to planar membranes containing the t‐SNARE, syntaxin 1A. Fusion was Ca2+‐independent and did not occur with vesicles lacking v‐SNAREs. Therefore, syntaxin alone forms a functional fusion complex with v‐SNAREs. Our functional fusion assay uses synaptic vesicles that are modified, so each fusion event results in an observable transient current. The mSV do not fuse with protein‐free membranes. Additionally, artificial vesicles lacking v‐SNAREs do not fuse with membranes containing syntaxin. This technique can be adapted to measure fusion in other SNARE systems and should enable the identification of proteins critical to vesicle—membrane fusion. This will further our understanding of exocytosis and may improve targeting and delivery of therapeutic agents packaged in vesicles.


Molecular Membrane Biology | 1995

Evaluation of the evidence for ion channels in synaptic vesicles (Review)

Dixon J. Woodbury

Synaptic vesicles (SVs) have been the focus of much research for many years, however only recently have ion channels from SV membranes been reported. There is now convincing evidence that SVs contain ion channels. This conclusion is based on direct experimental results from several different laboratories using the patch clamp or planar lipid bilayer technique on SVs and neurosecretory granules (NSG). Some limitations of patch clamping and of fusing synamptic vesicles to a bilayer are described and the advantages of the nystatin/ergosterol fusion method are presented. Six different channels appear to exist in SV (or NSG) membranes. Two large channels (250 and 154 pS) have been observed in SVs isolated from mammalian brain, two channels (180 and 13 pS) from Torpedo electric organ, and two channels (130 and 30-40 pS) from NSG. The three larger channels from each set (250, 180 and 130 pS7) are novel in that they have a subconductance state. The 154 pS channel has been identified as synaptophysin but the identity and function of the other channels is unknown. Although some of the channels are gated by voltage, only the 130 pS channel is modulated by Ca2+. Further knowledge of what regulates these channels is mandatory if we are to determine the physiological significance of these channels.


Biophysical Journal | 2010

Chemomechanical regulation of SNARE proteins studied with molecular dynamics simulations.

Lars V. Bock; Brian Hutchings; Helmut Grubmüller; Dixon J. Woodbury

SNAP-25B is a neuronal protein required for neurotransmitter (NT) release and is the target of Botulinum Toxins A and E. It has two SNARE domains that form a four-helix bundle when combined with syntaxin 1A and synaptobrevin. Formation of the three-protein complex requires both SNARE domains of SNAP-25B to align parallel, stretching out a central linker. The N-terminal of the linker has four cysteines within eight amino acids. Palmitoylation of these cysteines helps target SNAP-25B to the membrane; however, these cysteines are also an obvious target for oxidation, which has been shown to decrease SNARE complex formation and NT secretion. Because the linker is only slightly longer than the SNARE complex, formation of a disulfide bond between two cysteines might shorten it sufficiently to reduce secretion by limiting complex formation. To test this idea, we have carried out molecular dynamics simulations of the SNARE complex in the oxidized and reduced states. Indeed, marked conformational differences and a reduction of helical content in SNAP-25B upon oxidation are seen. Further differences are found for hydrophobic interactions at three locations, crucial for the helix-helix association. Removal of the linker induced different conformational changes than oxidation. The simulations suggest that oxidation of the cysteines leads to a dysfunctional SNARE complex, thus downregulating NT release during oxidative stress.


Biophysical Journal | 1988

Vesicle-membrane fusion. Observation of simultaneous membrane incorporation and content release

Dixon J. Woodbury; James E. Hall

Vesicle fusion, the central process of neurotransmitter release and hormonal secretion, is a complex process culminating in simultaneous incorporation of vesicle membrane into the plasma membrane and release of the vesicular contents extracellularly. This report describes simultaneous observation of membrane incorporation and content release using a model system composed of a planar bilayer and dye-filled vesicles.

Collaboration


Dive into the Dixon J. Woodbury's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

José R. Lemos

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Brady Hunt

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie Kelly

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

David E. Lee

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

David Hallan

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward E. Custer

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge