Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dj Donaghy is active.

Publication


Featured researches published by Dj Donaghy.


Australian Journal of Experimental Agriculture | 2001

Plant-soluble carbohydrate reserves and senescence - key criteria for developing an effective grazing management system for ryegrass-based pastures: a review

Wj Fulkerson; Dj Donaghy

This review examines the use of changes in soluble carbohydrate reserves, and the onset of senescence in ryegrass (Lolium spp.), as key criteria for successfully managing an intermittent grazing system for dairy cattle. Ryegrass is a ‘3-leaf ’ plant; that is, only about 3 green leaves/tiller exist at any one time with the initiation of a new leaf coinciding with senescence of the oldest fourth leaf. Thus, grazing pasture older than 3 leaves/tiller will not only lead to wastage of pasture but also the senescent material will reduce overall quality of herbage. Based on this, the time taken for 3 new leaves/tiller to regrow sets the maximum grazing interval. On the other hand, in a well-utilised dairy pasture, most ryegrass leaf has been removed and the plant relies on stored water-soluble carbohydrate reserves to grow new shoots and hence regain photosynthetic capacity. If the concentration of water-soluble carbohydrates is inadequate, because there has been insufficient time to replenish in the previous inter-grazing period, regrowth will be suppressed and this may also affect persistence in the longer term. Immediately after grazing, water-soluble carbohydrate reserves decline as they are used to regrow new shoots, and root growth stops. It is not until about 3/4 of a new leaf/tiller has regrown that the plant has adequate photosynthetic capacity for growth and maintenance and only then does water-soluble carbohydrate replenishment and root growth commence. Studies have shown that subsequent regrowth is suppressed if plants are redefoliated before the 2 leaves/tiller stage of regrowth. Also, the levels of potassium and nitrogen (as nitrates and other non-protein nitrogen products) may be very high and cause metabolic problems in stock grazing such pasture. Thus, replenishment of water-soluble carbohydrate reserves sets the minimum grazing interval at 2 leaves/tiller. The rate of accumulation of water-soluble carbohydrates in the plant is a function of input through photosynthesis (source) and output to growth and respiration (sinks). Thus, apart from grazing interval (which sets the time to replenish water-soluble carbohydrate plant reserves), water-soluble carbohydrate storage will be influenced by incoming solar radiation (cloud cover, day length, pasture canopy density) and energy needs of the plant through respiration (temperature, canopy mass) and growth. Relating grazing interval to leaf number places the emphasis on the readiness of plants to be grazed rather than on the animals’ requirements, with leaf appearance interval depending primarily on ambient temperature. This allows grazing interval to be expressed in a similar morphological stage of growth, irrespective of season or location. Setting grazing interval on these 2 criteria has been shown to maximise growth and persistence of ryegrass and optimise the levels of most nutrients in pasture required by dairy cattle including protein, water-soluble carbohydrates, calcium, potassium and magnesium. Metabolisable energy and fibre do not change appreciably up to the 3 leaves/tiller stage of regrowth. On the other hand, grazing pasture before 2 leaves/tiller not only retards regrowth and reduces persistence, it provides forage too high in potassium and protein (nitrates) and too low in water-soluble carbohydrates for dairy cattle.


BMC Molecular Biology | 2010

Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.)

Jm Lee; J.R. Roche; Dj Donaghy; Anthony Thrush; Puthigae Sathish

BackgroundPerennial ryegrass (Lolium perenne L.) is an important pasture and turf crop. Biotechniques such as gene expression studies are being employed to improve traits in this temperate grass. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is among the best methods available for determining changes in gene expression. Before analysis of target gene expression, it is essential to select an appropriate normalisation strategy to control for non-specific variation between samples. Reference genes that have stable expression at different biological and physiological states can be effectively used for normalisation; however, their expression stability must be validated before use.ResultsExisting Serial Analysis of Gene Expression data were queried to identify six moderately expressed genes that had relatively stable gene expression throughout the year. These six candidate reference genes (eukaryotic elongation factor 1 alpha, eEF1A; TAT-binding protein homolog 1, TBP-1; eukaryotic translation initiation factor 4 alpha, eIF4A; YT521-B-like protein family protein, YT521-B; histone 3, H3; ubiquitin-conjugating enzyme, E2) were validated for qRT-PCR normalisation in 442 diverse perennial ryegrass (Lolium perenne L.) samples sourced from field- and laboratory-grown plants under a wide range of experimental conditions. Eukaryotic EF1A is encoded by members of a multigene family exhibiting differential expression and necessitated the expression analysis of different eEF1A encoding genes; a highly expressed eEF1A (h), a moderately, but stably expressed eEF1A (s), and combined expression of multigene eEF1A (m). NormFinder identified eEF1A (s) and YT521-B as the best combination of two genes for normalisation of gene expression data in perennial ryegrass following different defoliation management in the field.ConclusionsThis study is unique in the magnitude of samples tested with the inclusion of numerous field-grown samples, helping pave the way to conduct gene expression studies in perennial biomass crops under field-conditions. From our study several stably expressed reference genes have been validated. This provides useful candidates for reference gene selection in perennial ryegrass under conditions other than those tested here.


Animal Production Science | 2009

Weather, herbage quality and milk production in pastoral systems. 2. Temporal patterns and intra-relationships in herbage quality and mineral concentration parameters

J.R. Roche; Lr Turner; Jm Lee; D. C. Edmeades; Dj Donaghy; K.A. Macdonald; J.W. Penno; D.P. Berry

Prevailing weather conditions influence herbage growth and quality, and therefore may have a substantial impact on animal production. Before investigating relationships between weather factors, herbage quality, and animal production, it is beneficial to first quantify temporal trends in herbage quality characteristics and mineral concentrations. The objective of the present study was to investigate the existence of temporal trends in herbage quality characteristics and mineral concentrations, and to quantify the intra-dependency among these variables. Weekly herbage quality and mineral concentration data from a research farm were collected from 1995 to 2001, inclusive. Fitted sinusoidal functions demonstrated cyclic temporal trends across herbage quality variables, but there was little cyclic temporal variation in the majority of herbage mineral concentration variables. The repeatability of herbage quality measurements was low to moderate (22% for ether extract to 54% for metabolisable energy). Linear relationships were observed within all herbage quality variables and herbage mineral concentration variables. Neutral detergent fibre and acid detergent fibre concentrations were strongly positively correlated with each other (r = 0.87), and negatively correlated with herbage digestibility (r = -0.64 and -0.74, respectively), water-soluble carbohydrate concentration (r = -0.52 and -0.68, respectively) and metabolisable energy content (r = -0.60 and -0.75, respectively). The absolute correlations among most herbage minerals were poor (r <0.30). However, magnesium concentration was positively correlated with calcium (r = 0.54), copper (r = 0.56), and manganese (r = 0.37) concentrations, and negatively correlated with zinc (r = -0.56) concentration. Further investigation is required into the relationships between temporal weather and herbage quality trends, and their impact on animal production.


Australian Journal of Experimental Agriculture | 2007

The effect of grazing severity and fertiliser application during winter on herbage regrowth and quality of perennial ryegrass (Lolium perenne L.)

J.M. Lee; Dj Donaghy; J.R. Roche

The objective of the current study was to quantify the effects of greater herbage residuals in winter on leaf appearance rate, herbage accumulation and quality, and plant energy reserves, as well as quantifying the effects nitrogen (N), or phosphorus (P) and sulfur (S) fertilisers had on the above measures. Ten pasture areas were grazed to different residual masses (1260 ± 101 and 1868 ± 139 kg DM/ha, Severe and Lax, respectively) over five consecutive days by dry dairy cows. Two randomly located subplots within each grazing area were fertilised with either 50 kg N/ha (N treatment) or 50 kg N/ha, 31 kg S/ha plus 26 kg P/ha (N + S + P treatment) on the day immediately following defoliation (day 1), and were compared with a control subplot. Neither growth rate (15.1 ± 8.1 kg DM/ha.day), nor leaf appearance rate (15.1 ± 0.3 days per new leaf) differed between treatments. As a result, herbage accumulated over the 49 days of regrowth was similar across grazing treatments and averaged 726 kg DM/ha. Application of N + S + P tended to increase total herbage accumulated during regrowth compared with either the control or N treatment subplots (860 v. 675 and 643 kg DM/ha, respectively), likely a result of increased tiller density. Swards defoliated more severely had lower initial water-soluble carbohydrate (WSC) concentrations compared with swards laxly defoliated, but this difference had disappeared before appearance of the third new leaf. Herbage quality improved in the Severe treatment subplots after emergence of the third new leaf, with higher digestibility, greater WSC and metabolisable energy, and lower fibre content than in laxly grazed subplots.


Crop & Pasture Science | 2006

Effect of defoliation interval on water-soluble carbohydrate and nitrogen energy reserves, regrowth of leaves and roots, and tiller number of cocksfoot (Dactylis glomerata L.) plants

Lr Turner; Dj Donaghy; Pa Lane; Rp Rawnsley

This study investigated the influence of leaf stage-based defoliation interval on water-soluble carbohydrate and nitrogen energy reserve status, regrowth of leaves and roots, and tiller number of cocksfoot (Dactylis glomerata L.) cv. Kara plants up to 24 days (3.5-leaf stage) following defoliation. Treatments were based on defoliation intervals of 1-, 2-, and 4-leaf stages of regrowth, with treatments terminated when the 1-leaf defoliation interval had been completed 4 times, the 2-leaf interval 2 times, and the 4-leaf interval once. Selected plants were destructively harvested prior to commencement of treatments (H0), immediately following cessation of treatments (H1), and at 5 days (H2), 10 days (H3), and 24 days (H4) following H1. Leaf, root, and tiller dry matter yield were determined at each harvest event, as well as tiller number/plant. Levels of water-soluble carbohydrate and nitrogen reserves in plant stubble and roots were determined at each destructive harvest. Initiation and death of daughter tillers were monitored from H0 to the completion of the study. More frequent defoliation of cocksfoot plants resulted in reduced water-soluble carbohydrate assimilation and therefore leaf, root, and tiller dry matter accumulation during the subsequent recovery period. Defoliation at the 1-leaf stage severely limited the regrowth potential of cocksfoot plants, whereas defoliation at the 2-leaf stage was adequate for plant recovery, but did not maximise regrowth. The results of this study showed that a defoliation interval based on the 4-leaf stage maximises water-soluble carbohydrate reserves, tillering, and leaf and root dry matter yields. The priority sequence for allocation of water-soluble carbohydrate reserves followed the order of leaf growth, root growth, and tillering during the regrowth period. Nitrogen energy reserves were found to play a minor role in the regrowth of cocksfoot plants following defoliation. Additional keyword: leaf stage.


Crop & Pasture Science | 2009

Potential of deficit irrigation to increase marginal irrigation response of perennial ryegrass (Lolium perenne L.) on Tasmanian dairy farms

Rp Rawnsley; B. R. Cullen; Lr Turner; Dj Donaghy; Mj Freeman; Km Christie

In the cool temperate dairy regions of Tasmania, there is heavy reliance on irrigation to maximise pasture performance by ensuring that plants do not suffer water stress. Consequently, irrigation water has often been applied at a greater amount than plant water requirements, resulting in low efficiencies. An irrigation experiment was undertaken in north-western Tasmania between October 2007 and April 2008, examining the effect of deficit irrigation treatments on pasture growth and water-use efficiency. A rainfall deficit (potential evapotranspiration minus rainfall) of 20 mm was implemented to schedule irrigation, at which point 20, 16, 12, 8, or 0 mm of irrigation water was applied, referred to as treatments I100%, I80%, I60%, I40%, and I0%, respectively. The trial was a randomised complete block design with 4 replications. There were 21 irrigation events between October and April. The experimental area was grazed by 60 Holstein Friesian heifers at a grazing interval coinciding with emergence of 2.5–3.0 new ryegrass leaves/tiller of the I100% treatment. Cumulative pasture consumption for the irrigated period was 9.2, 8.9, 7.6, 6.9, and 3.7 t dry matter (DM)/ha for the I100%, I80%, I60%, I40%, and I0% treatments, respectively. The resulting marginal irrigation water-use index (MIWUI; marginal production due to irrigation) was 1.29, 1.54, 1.55, and 1.87 t DM/ML, for the I100%, I80%, I60%, and I40% treatments, respectively. The results of this study were modelled using the biophysical model DairyMod, with strong agreement between observed and modelled data. DairyMod was then used to simulate the MIWUI for 5 differing dairy regions of Tasmania using 40 years of climatic data (1968–2007) under 3 differing nitrogen management strategies by the 5 irrigation treatments. The modelling indicated that a MIWUI greater than 2 t DM/ML can be achieved in all regions. The current study has shown that the opportunity exists for irrigated pastoral systems to better manage an increasingly scarce resource and substantially improve responses to irrigation.


PLOS ONE | 2010

Plants Modify Biological Processes to Ensure Survival following Carbon Depletion: A Lolium perenne Model

Jm Lee; Puthigae Sathish; Dj Donaghy; J.R. Roche

Background Plants, due to their immobility, have evolved mechanisms allowing them to adapt to multiple environmental and management conditions. Short-term undesirable conditions (e.g. moisture deficit, cold temperatures) generally reduce photosynthetic carbon supply while increasing soluble carbohydrate accumulation. It is not known, however, what strategies plants may use in the long-term to adapt to situations resulting in net carbon depletion (i.e. reduced photosynthetic carbon supply and carbohydrate accumulation). In addition, many transcriptomic experiments have typically been undertaken under laboratory conditions; therefore, long-term acclimation strategies that plants use in natural environments are not well understood. Methodology/Principal Findings Perennial ryegrass (Lolium perenne L.) was used as a model plant to define whether plants adapt to repetitive carbon depletion and to further elucidate their long-term acclimation mechanisms. Transcriptome changes in both lamina and stubble tissues of field-grown plants with depleted carbon reserves were characterised using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The RT-qPCR data for select key genes indicated that plants reduced fructan degradation, and increased photosynthesis and fructan synthesis capacities following carbon depletion. This acclimatory response was not sufficient to prevent a reduction (P<0.001) in net biomass accumulation, but ensured that the plant survived. Conclusions Adaptations of plants with depleted carbon reserves resulted in reduced post-defoliation carbon mobilization and earlier replenishment of carbon reserves, thereby ensuring survival and continued growth. These findings will help pave the way to improve plant biomass production, for either grazing livestock or biofuel purposes.


Journal of Dairy Science | 2008

Short Communication: Effect of Postgrazing Residual Pasture Height on Milk Production

Jm Lee; Dj Donaghy; J.R. Roche

In grazing systems, dry matter intake (DMI) and milk production have been reported to increase with increasing pasture allowance (PA). This has often led to greater postgrazing residual heights being associated with a well-fed cow. However, in previous studies pastures were often managed to be homogeneous pretreatment, confounding the effect of postgrazing height and PA because high PA led to high postgrazing height. The objective of this study was to determine whether postgrazing height affects milk production if cows are offered the same PA. Before the study, perennial ryegrass (Lolium perenne L.) dominant pastures were randomly allocated to 1 of 3 grazing treatments and defoliated to 4.1 +/- 0.3 (low), 5.1 +/- 0.3 (medium), or 5.9 +/- 0.3 (high) cm compressed postgrazing residual pasture height. When a minimum of 2 new leaves had emerged on the majority of ryegrass tillers, 30 multiparous dairy cows were randomly assigned to 1 of the 3 treatments and grazed their respective pastures over a 10-d period. Cows were offered a similar PA above the preexperimental postgrazing residual (17.1 +/- 2.9 kg of dry matter/cow per d). Pasture disappearance per daily grazing area (estimated DMI) was similar across treatments (14.8 kg of dry matter/cow per d). Milk yield was negatively correlated with postgrazing height, but postgrazing height had no effect on milk component yield. Although the reason for this reduction in milk yield remains unclear, data indicate that low postgrazing heights do not adversely affect milk production.


Crop & Pasture Science | 2011

Yield and water-use efficiency of contrasting lucerne genotypes grown in a cool temperate environment

Kg Pembleton; Rp Rawnsley; Dj Donaghy

In Tasmania, Australia, forage production is maximised by the use of irrigation. However, availability of water for irrigation is often limited, making the water-use efficiency (WUE) of a species/genotype an important consideration when designing forage systems. Field experimentation and an associated modelling study was undertaken to determine the WUE and environmental factors influencing WUE for contrasting lucerne (Medicago sativa) genotypes across six dairying regions within Tasmania. In the field experiment a significant genotype influence on WUE was identified under irrigated conditions and modelling identified a genotype influence on WUE in three out of six regions. WUE was related to the amount of water received (irrigation plus rainfall). The marginal response to the application of irrigation water (MWUE) was greatest for the highly winter-active genotype in the field experiment; however, modelling did not identify a consistent genotype influence on MWUE across regions. MWUE was negatively associated with the amount of deep drainage. The present study identified that lucerne has the potential to improve the WUE of forage systems across six different Tasmanian regions. The linkage of MWUE and deep drainage highlights that deficit irrigation practices could further improve the WUE of this forage crop, particularly in environments prone to deep drainage.


Animal Production Science | 2009

Weather, herbage quality and milk production in pastoral systems. 3. Inter-relationships and associations between weather variables and herbage growth rate, quality and mineral concentration.

J.R. Roche; Lr Turner; Jm Lee; D. C. Edmeades; Dj Donaghy; K.A. Macdonald; J.W. Penno; D.P. Berry

Prevailing weather conditions influence herbage growth and quality, and therefore may have a substantial impact on animal production. Before investigating relationships between weather factors, herbage quality and animal production, it is beneficial to first quantify interactions between herbage quality characteristics and mineral concentrations. The objective of the present study was to investigate the association between weather and herbage growth rate, quality and mineral concentration under rotational grazing systems. Daily weather data and weekly records of herbage quality and mineral concentration from a research dairy farm were available across the years 1995 to 2001, inclusive. Herbage growth rates were also recorded on a monthly basis. Results imply moderate correlations between some weather variables and herbage quality and mineral concentration. Generally, the strength of the absolute correlations between weather and herbage-related variables decreased following adjustment of the herbage-related variables for month of year and research farmlet. Negative correlations existed between rainfall and herbage water-soluble carbohydrate (r = –0.19) and organic matter digestibility concentration (r = –0.13) and metabolisable energy content (r = –0.14), independent of time of year and farmlet. Weather explained up to 14% of the variation in herbage nutrient content over and above that explained by time of year and farmlet. Significantly different correlations existed across time between some weather and herbage-related variables, indicating that the relationships may differ across seasons. Results from the present study, in conjunction with information on the effect of herbage quality and/or mineral concentration on animal production, will be valuable in improving our understanding of weather influences on herbage growth, quality and mineral concentration.

Collaboration


Dive into the Dj Donaghy's collaboration.

Top Co-Authors

Avatar

Rp Rawnsley

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Lr Turner

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Km Christie

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Pa Lane

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Sa Adediran

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mj Freeman

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

J.R. Roche

University of Tasmania

View shared research outputs
Researchain Logo
Decentralizing Knowledge