Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Djuro Kosanovic is active.

Publication


Featured researches published by Djuro Kosanovic.


American Journal of Respiratory and Critical Care Medicine | 2010

Role of Epidermal Growth Factor Inhibition in Experimental Pulmonary Hypertension

Bhola K. Dahal; Teodora Cornitescu; Aleksandra Tretyn; Soni Savai Pullamsetti; Djuro Kosanovic; Rio Dumitrascu; Hossein Ardeschir Ghofrani; Norbert Weissmann; Robert Voswinckel; Gamal-Andre Banat; Werner Seeger; Friedrich Grimminger; Ralph T. Schermuly

RATIONALE Epidermal growth factor (EGF) and its receptors play a role in cell proliferation and survival and are implicated in the pathobiology of pulmonary arterial hypertension (PAH). OBJECTIVES To study the role of EGF inhibition on experimental pulmonary hypertension. METHODS We investigated (1) the effects of three clinically approved EGF receptor (EGFR) antagonists in vitro on rat pulmonary arterial smooth muscle cell proliferation and in vivo on experimental pulmonary hypertension (PH) induced by monocrotaline injection in rats and by chronic hypoxia in mice, and (2) the expression of EGFR in the lung tissues from experimental and clinical PH. MEASUREMENTS AND MAIN RESULTS The EGFR inhibitors gefitinib, erlotinib, and lapatinib inhibited the EGF-induced proliferation of pulmonary arterial smooth muscle cells. In rats with established PH, gefitinib and erlotinib significantly reduced right ventricular systolic pressure and right ventricular hypertrophy. In addition, the medial wall thickness and muscularization of pulmonary arteries were improved. In contrast, lapatinib did not provide therapeutic benefit. These EGFR antagonists at their highest tolerable dose did not yield significant improvement in right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling in mice with chronic hypoxic PH. Moreover, no significant alteration in the EGFR expression was detected in the lung tissues from patients with idiopathic PAH. CONCLUSIONS The partial therapeutic efficacy of the EGFR antagonists in animal models of pulmonary hypertension and the absence of significant alteration in EGFR expression in the lungs from patients with idiopathic PAH suggest that EGFRs do not represent a promising target for the treatment of pulmonary hypertension.


American Journal of Pathology | 2013

Mast cells and fibroblasts work in concert to aggravate pulmonary fibrosis: role of transmembrane SCF and the PAR-2/PKC-α/Raf-1/p44/42 signaling pathway.

Malgorzata Wygrecka; Bhola K. Dahal; Djuro Kosanovic; Frank Petersen; Brigitte Taborski; Susanne von Gerlach; Miroslava Didiasova; Dariusz Zakrzewicz; Klaus T. Preissner; Ralph T. Schermuly; Philipp Markart

Mast cell (MC) accumulation has been demonstrated in the lungs of idiopathic pulmonary fibrosis (IPF) patients. Mediators released from MCs may regulate tissue remodeling processes, thereby contributing to IPF pathogenesis. We investigated the role of MC-fibroblast interaction in the progression of lung fibrosis. Increased numbers of activated MCs, in close proximity to fibroblast foci and alveolar type II cells, were observed in IPF lungs. Correspondingly elevated tryptase levels were detected in IPF lung tissue samples. Coculture of human lung MCs with human lung fibroblasts (HLFs) induced MC activation, as evinced by tryptase release, and stimulated HLF proliferation; IPF HLFs exhibited a significantly higher growth rate, compared with control. Tryptase stimulated HLF growth in a PAR-2/PKC-α/Raf-1/p44/42-dependent manner and potentiated extracellular matrix production, but independent of PKC-α, Raf-1, and p44/42 activities. Proproliferative properties of tryptase were attenuated by knockdown or pharmacological inhibition of PAR-2, PKC-α, Raf-1, or p44/42. Expression of transmembrane SCF, but not soluble SCF, was elevated in IPF lung tissue and in fibroblasts isolated from IPF lungs. Coculture of IPF HLFs with MCs enhanced MC survival and proliferation. These effects were cell-contact dependent and could be inhibited by application of anti-SCF antibody or CD117 inhibitor. Thus, fibroblasts and MCs appear to work in concert to perpetuate fibrotic processes and so contribute to lung fibrosis progression.


Respiratory Research | 2011

Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats

Bhola K. Dahal; Djuro Kosanovic; Christina Kaulen; Teodora Cornitescu; Rajkumar Savai; Julia Hoffmann; Irwin Reiss; Hossein Ardeschir Ghofrani; Norbert Weissmann; Wolfgang M. Kuebler; Werner Seeger; Friedrich Grimminger; Ralph T. Schermuly

BackgroundMast cells (MCs) are implicated in inflammation and tissue remodeling. Accumulation of lung MCs is described in pulmonary hypertension (PH); however, whether MC degranulation and c-kit, a tyrosine kinase receptor critically involved in MC biology, contribute to the pathogenesis and progression of PH has not been fully explored.MethodsPulmonary MCs of idiopathic pulmonary arterial hypertension (IPAH) patients and monocrotaline-injected rats (MCT-rats) were examined by histochemistry and morphometry. Effects of the specific c-kit inhibitor PLX and MC stabilizer cromolyn sodium salt (CSS) were investigated in MCT-rats both by the preventive and therapeutic approaches. Hemodynamic and right ventricular hypertrophy measurements, pulmonary vascular morphometry and analysis of pulmonary MC localization/counts/activation were performed in animal model studies.ResultsThere was a prevalence of pulmonary MCs in IPAH patients and MCT-rats as compared to the donors and healthy rats, respectively. Notably, the perivascular MCs were increased and a majority of them were degranulated in lungs of IPAH patients and MCT-rats (p < 0.05 versus donor and control, respectively). In MCT-rats, the pharmacological inhibitions of MC degranulation and c-kit with CSS and PLX, respectively by a preventive approach (treatment from day 1 to 21 of MCT-injection) significantly attenuated right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH). Moreover, vascular remodeling, as evident from the significantly decreased muscularization and medial wall thickness of distal pulmonary vessels, was improved. However, treatments with CSS and PLX by a therapeutic approach (from day 21 to 35 of MCT-injection) neither improved hemodynamics and RVH nor vascular remodeling.ConclusionsThe accumulation and activation of perivascular MCs in the lungs are the histopathological features present in clinical (IPAH patients) and experimental (MCT-rats) PH. Moreover, the accumulation and activation of MCs in the lungs contribute to the development of PH in MCT-rats. Our findings reveal an important pathophysiological insight into the role of MCs in the pathogenesis of PH in MCT- rats.


Cell Stem Cell | 2017

Two-Way Conversion between Lipogenic and Myogenic Fibroblastic Phenotypes Marks the Progression and Resolution of Lung Fibrosis

Elie El Agha; Alena Moiseenko; Vahid Kheirollahi; Stijn De Langhe; Slaven Crnkovic; Grazyna Kwapiszewska; Marten Szibor; Djuro Kosanovic; Felix Schwind; Ralph T. Schermuly; Ingrid Henneke; BreAnne MacKenzie; Jennifer Quantius; Susanne Herold; Aglaia Ntokou; Katrin Ahlbrecht; Thomas Braun; Rory E. Morty; Andreas Günther; Werner Seeger; Saverio Bellusci

Idiopathic pulmonary fibrosis (IPF) is a form of progressive interstitial lung disease with unknown etiology. Due to a lack of effective treatment, IPF is associated with a high mortality rate. The hallmark feature of this disease is the accumulation of activated myofibroblasts that excessively deposit extracellular matrix proteins, thus compromising lung architecture and function and hindering gas exchange. Here we investigated the origin of activated myofibroblasts and the molecular mechanisms governing fibrosis formation and resolution. Genetic engineering in mice enables the time-controlled labeling and monitoring of lipogenic or myogenic populations of lung fibroblasts during fibrosis formation and resolution. Our data demonstrate a lipogenic-to-myogenic switch in fibroblastic phenotype during fibrosis formation. Conversely, we observed a myogenic-to-lipogenic switch during fibrosis resolution. Analysis of human lung tissues and primary human lung fibroblasts indicates that this fate switching is involved in IPF pathogenesis, opening potential therapeutic avenues to treat patients.


European Respiratory Journal | 2010

Therapeutic efficacy of azaindole-1 in experimental pulmonary hypertension

Bhola K. Dahal; Djuro Kosanovic; Pamarthi Pk; Akylbek Sydykov; Lai Yj; Kast R; Schirok H; Stasch Jp; Hossein-Ardeschir Ghofrani; Norbert Weissmann; F. Grimminger; Werner Seeger; Ralph T. Schermuly

An accumulating body of evidence incriminates Rho kinase (ROCK) in the pathogenesis of pulmonary hypertension (PH). The therapeutic efficacy of azaindole-1, a novel highly selective and orally active ROCK inhibitor, has not yet been investigated in PH. This study aimed to investigate the effects of azaindole-1 on 1) acute hypoxic pulmonary vasoconstriction (HPV), 2) proliferation of pulmonary arterial smooth muscle cells (PASMCs) and 3) animal models of PH. Azaindole-1 significantly inhibited HPV in isolated, ventilated and buffer-perfused murine lungs and proliferation of primary rat PASMCs in vitro. Azaindole-1 was administered orally from 21 to 35 days after monocrotaline (MCT) injection in rats and hypoxic exposure in mice. Azaindole-1 (10 and 30 mg per kg body weight per day in rats and mice, respectively) significantly improved haemodynamics and right ventricular hypertrophy. Moreover, the medial wall thickness and muscularisation of peripheral pulmonary arteries were ameliorated. Azaindole-1 treatment resulted in a decreased immunoreactivity for phospho-myosin phosphatase target subunit 1 and proliferating cell nuclear antigen in pulmonary vessels of MCT-injected rats, suggesting an impaired ROCK activity and reduced proliferating cells. Azaindole-1 provided therapeutic benefit in experimental PH, and this may be attributable to its potent vasorelaxant and antiproliferative effects. Azaindole-1 may offer a useful approach for treatment of PH.


International Journal of Cardiology | 2013

Effects of multikinase inhibitors on pressure overload-induced right ventricular remodeling

Baktybek Kojonazarov; Akylbek Sydykov; Soni Savai Pullamsetti; Himal Luitel; Bhola K. Dahal; Djuro Kosanovic; Xia Tian; Matthaeus Majewski; Christin Baumann; Steve Evans; Peter Phillips; David Fairman; Neil Davie; Chris Wayman; Iain Kilty; Norbert Weissmann; Friedrich Grimminger; Werner Seeger; Hossein Ardeschir Ghofrani; Ralph T. Schermuly

BACKGROUND Little is known about the effects of current PAH therapies and receptor tyrosine kinase inhibitors on heart remodeling. We sought to investigate the effects of the multikinase inhibitors sunitinib (PDGFR-, VEGFR- and KIT-inhibitor) and sorafenib (raf1/b-, VEGFR-, PDGFR-inhibitor) on pressure overload induced right ventricular (RV) remodeling. METHODS We investigated the effects of the kinase inhibitors on hemodynamics and remodeling in rats subjected either to monocrotaline (MCT)-induced PH or to surgical pulmonary artery banding (PAB). MCT rats were treated from days 21 to 35 with either vehicle, sunitinib (1mg/kg, 5mg/kg and 10mg/kg/day) or sorafenib (10mg/kg/day). PAB rats were treated with vehicle, sunitinib (10mg/kg/day) or sorafenib (10mg/kg/day) from days 7 to 21. RV function and remodeling were determined using echocardiography, invasive hemodynamic measurement and histomorphometry. RESULTS Treatment with both sorafenib and sunitinib decreased right ventricular systolic pressure, pulmonary vascular remodeling, RV hypertrophy and fibrosis in MCT rats. This was associated with an improvement of RV function. Importantly, after PAB, both compounds reversed RV chamber and cellular hypertrophy, reduced RV interstitial and perivascular fibrosis, and improved RV function. CONCLUSION We demonstrated that sunitinib and sorafenib reversed RV remodeling and significantly improved RV function measured via a range of invasive and non-invasive cardiopulmonary endpoints in experimental models of RV hypertrophy.


Pulmonary circulation | 2014

Histological characterization of mast cell chymase in patients with pulmonary hypertension and chronic obstructive pulmonary disease

Djuro Kosanovic; Bhola K. Dahal; Dorothea M. Peters; Michael Seimetz; Malgorzata Wygrecka; Katrin Hoffmann; Jochen Antel; Irwin Reiss; Hossein Ardeschir Ghofrani; Norbert Weissmann; Friedrich Grimminger; Werner Seeger; Ralph T. Schermuly

Our previous findings demonstrated an increase in pulmonary mast cells (MCs) in idiopathic pulmonary arterial hypertension (IPAH). Also, literature suggests a potential role for MCs in chronic obstructive pulmonary disease (COPD). However, a comprehensive investigation of lungs from patients is still needed. We systematically investigated the presence/expression of MCs/MC chymase in the lungs of IPAH and COPD patients by (immuno)histochemistry and subsequent quantification. We found that total and perivascular chymase-positive MCs were significantly higher in IPAH patients than in donors. In addition, chymase-positive MCs were located in proximity to regions with prominent expression of big-endothelin-1 in the pulmonary vessels of IPAH patients. Total and perivascular MCs around resistant vessels were augmented and a significant majority of them were degranulated (activated) in COPD patients. While the total chymase-positive MC count tended to increase in COPD patients, the perivascular number was significantly enhanced in all vessel sizes analyzed. Surprisingly, MC and chymase-positive MC numbers positively correlated with better lung function in COPD. Our findings suggest that activated MCs, possibly by releasing chymase, may contribute to pulmonary vascular remodeling in IPAH. Pulmonary MCs/chymase may have compartment-specific (vascular vs. airway) functions in COPD. Future studies should elucidate the mechanisms of MC accumulation and the role of MC chymase in pathologies of these severe lung diseases.


Histology and Histopathology | 2013

Mast cell chymase: an indispensable instrument in the pathological symphony of idiopathic pulmonary fibrosis?

Djuro Kosanovic; Bhola K. Dahal; Malgorzata Wygrecka; Irwin Reiss; Andreas Günther; Hossein Ardeschir Ghofrani; Norbert Weissmann; Friedrich Grimminger; Werner Seeger; Ralph T. Schermuly; Gamal-Andre Banat

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal lung disease with no known etiology and treatment options. The hallmarks of the histopathology, which is characteristic of usual interstitial pneumonia (UIP) pattern, include interstitial fibrosis, honeycomb changes and fibroblast foci that develop owing to fibroblast proliferation and excessive matrix deposition. Although the complete pathomechanism is not yet understood, several molecular culprits, including transforming growth factor (TGF)-β, Angiotensin (Ang) II, endothelin (ET)-1, matrix metalloproteinases (MMPs) and cytokines have been identified. IPF is increasingly believed to be an epithelial-driven disease; however, the literature does support an implication of altered immune response and inflammatory processes in the onset or progression of the disease. Mast cells (MCs) are multifunctional tissue resident cells involved in the inflammatory and immune response. An increasing body of evidence suggests a role of MCs and their mediator chymase in the pathology of IPF. With regard to the underlying mechanisms, it is conceivable that MC chymase may function via activation or processing of factors such as proteases, cytokines and growth factors. In this review, we will discuss how MC chymase is linked to and can potentially contribute to the development of IPF. Moreover, the findings from animal model studies will be discussed to highlight the chymase inhibitors as a promising strategy for the treatment of pulmonary fibrosis.


Seminars in Cell & Developmental Biology | 2016

Role of fibroblast growth factors in organ regeneration and repair

Elie El Agha; Djuro Kosanovic; Ralph T. Schermuly; Saverio Bellusci

In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.


Respiratory Research | 2011

Therapeutic efficacy of TBC3711 in monocrotaline-induced pulmonary hypertension

Djuro Kosanovic; Baktybek Kojonazarov; Himal Luitel; Bhola K. Dahal; Akylbek Sydykov; Teodora Cornitescu; Wiebke Janssen; Ralf P. Brandes; Neil Davie; Hossein Ardeschir Ghofrani; Norbert Weissmann; Friedrich Grimminger; Werner Seeger; Ralph T. Schermuly

BackgroundEndothelin-1 signalling plays an important role in pathogenesis of pulmonary hypertension. Although different endothelin-A receptor antagonists are developed, a novel therapeutic option to cure the disease is still needed. This study aims to investigate the therapeutic efficacy of the selective endothelin-A receptor antagonist TBC3711 in monocrotaline-induced pulmonary hypertension in rats.MethodsMonocrotaline-injected male Sprague-Dawley rats were randomized and treated orally from day 21 to 35 either with TBC3711 (Dose: 30 mg/kg body weight/day) or placebo. Echocardiographic measurements of different hemodynamic and right-heart hypertrophy parameters were performed. After day 35, rats were sacrificed for invasive hemodynamic and right-heart hypertrophy measurements. Additionally, histologic assessment of pulmonary vascular and right-heart remodelling was performed.ResultsThe novel endothelin-A receptor antagonist TBC3711 significantly attenuated monocrotaline-induced pulmonary hypertension, as evident from improved hemodynamics and right-heart hypertrophy in comparison with placebo group. In addition, muscularization and medial wall thickness of distal pulmonary vessels were ameliorated. The histologic evaluation of the right ventricle showed a significant reduction in fibrosis and cardiomyocyte size, suggesting an improvement in right-heart remodelling.ConclusionThe results of this study suggest that the selective endothelin-A receptor antagonist TBC3711 demonstrates therapeutic benefit in rats with established pulmonary hypertension, thus representing a useful therapeutic approach for treatment of pulmonary hypertension.

Collaboration


Dive into the Djuro Kosanovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge