Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitri Ivanov is active.

Publication


Featured researches published by Dmitri Ivanov.


Cell | 2003

The PHD Finger of the Chromatin-Associated Protein ING2 Functions as a Nuclear Phosphoinositide Receptor

Or Gozani; Philip Karuman; David R. Jones; Dmitri Ivanov; James Cha; Alexey A. Lugovskoy; Cheryl L. Baird; Hong Zhu; Seth J. Field; Stephen L. Lessnick; Jennifer Villasenor; Bharat Mehrotra; Jian Chen; Vikram R. Rao; Joan S. Brugge; Colin G. Ferguson; Bernard Payrastre; David G. Myszka; Lewis C. Cantley; Gerhard Wagner; Nullin Divecha; Glenn D. Prestwich; Junying Yuan

Phosphoinositides (PtdInsPs) play critical roles in cytoplasmic signal transduction pathways. However, their functions in the nucleus are unclear, as specific nuclear receptors for PtdInsPs have not been identified. Here, we show that ING2, a candidate tumor suppressor protein, is a nuclear PtdInsP receptor. ING2 contains a plant homeodomain (PHD) finger, a motif common to many chromatin-regulatory proteins. We find that the PHD fingers of ING2 and other diverse nuclear proteins bind in vitro to PtdInsPs, including the rare PtdInsP species, phosphatidylinositol 5-phosphate (PtdIns(5)P). Further, we demonstrate that the ING2 PHD finger interacts with PtdIns(5)P in vivo and provide evidence that this interaction regulates the ability of ING2 to activate p53 and p53-dependent apoptotic pathways. Together, our data identify the PHD finger as a phosphoinositide binding module and a nuclear PtdInsP receptor, and suggest that PHD-phosphoinositide interactions directly regulate nuclear responses to DNA damage.


Nature | 2007

RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination

Adam G. W. Matthews; Alex J. Kuo; Santiago Ramón-Maiques; Sunmi Han; Karen S. Champagne; Dmitri Ivanov; Mercedes Gallardo; Dylan Carney; Peggie Cheung; David N. Ciccone; Kay L. Walter; Paul J. Utz; Yang Shi; Tatiana G. Kutateladze; Wei Yang; Or Gozani; Marjorie A. Oettinger

Nuclear processes such as transcription, DNA replication and recombination are dynamically regulated by chromatin structure. Eukaryotic transcription is known to be regulated by chromatin-associated proteins containing conserved protein domains that specifically recognize distinct covalent post-translational modifications on histones. However, it has been unclear whether similar mechanisms are involved in mammalian DNA recombination. Here we show that RAG2—an essential component of the RAG1/2 V(D)J recombinase, which mediates antigen-receptor gene assembly—contains a plant homeodomain (PHD) finger that specifically recognizes histone H3 trimethylated at lysine 4 (H3K4me3). The high-resolution crystal structure of the mouse RAG2 PHD finger bound to H3K4me3 reveals the molecular basis of H3K4me3-recognition by RAG2. Mutations that abrogate RAG2’s recognition of H3K4me3 severely impair V(D)J recombination in vivo. Reducing the level of H3K4me3 similarly leads to a decrease in V(D)J recombination in vivo. Notably, a conserved tryptophan residue (W453) that constitutes a key structural component of the K4me3-binding surface and is essential for RAG2’s recognition of H3K4me3 is mutated in patients with immunodeficiency syndromes. Together, our results identify a new function for histone methylation in mammalian DNA recombination. Furthermore, our results provide the first evidence indicating that disrupting the read-out of histone modifications can cause an inherited human disease.


Journal of Biological Chemistry | 2006

A Serpin from the Gut Bacterium Bifidobacterium longum Inhibits Eukaryotic Elastase-like Serine Proteases

Dmitri Ivanov; Celine Emonet; Francis Foata; Michael Affolter; Michelle Delley; Makda Fisseha; Stéphanie Blum-Sperisen; Sunil Kochhar; Fabrizio Arigoni

Serpins form a large class of protease inhibitors involved in regulation of a wide spectrum of physiological processes. Recently identified prokaryotic members of this protein family may provide a key to the evolutionary origins of the unique serpin fold and the associated inhibitory mechanism. We performed a biochemical characterization of a serpin from Bifidobacterium longum, an anaerobic Gram-positive bacterium that naturally colonizes human gastrointestinal tract. The B. longum serpin was shown to efficiently inhibit eukaryotic elastase-like proteases with a stoichiometry of inhibition close to 1. Porcine pancreatic elastase and human neutrophil elastase were inhibited with the second order association constants of 4.7 × 104 m-1 s-1 and 2.1 × 104 m-1 s-1, respectively. The B. longum serpin is expected to be active in the gastrointestinal tract, because incubation of the purified recombinant serpin with mouse feces produces a stable covalent serpin-protease adduct readily detectable by SDS-PAGE. Bifidobacteria may encounter both pancreatic elastase and neutrophil elastase in their natural habitat and protection against exogenous proteolysis may play an important role in the interaction between these commensal bacteria and their host.


The EMBO Journal | 2007

Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA

Oleg V. Tsodikov; Dmitri Ivanov; Lidija Staresincic; Ilana Shoshani; Robert Oberman; Orlando D. Schärer; Gerhard Wagner; Tom Ellenberger

The nucleotide excision repair (NER) pathway corrects DNA damage caused by sunlight, environmental mutagens and certain antitumor agents. This multistep DNA repair reaction operates by the sequential assembly of protein factors at sites of DNA damage. The efficient recognition of DNA damage and its repair are orchestrated by specific protein–protein and protein–DNA interactions within NER complexes. We have investigated an essential protein–protein interaction of the NER pathway, the binding of the XPA protein to the ERCC1 subunit of the repair endonuclease ERCC1‐XPF. The structure of ERCC1 in complex with an XPA peptide shows that only a small region of XPA interacts with ERCC1 to form a stable complex exhibiting submicromolar binding affinity. However, this XPA peptide is a potent inhibitor of NER activity in a cell‐free assay, blocking the excision of a cisplatin adduct from DNA. The structure of the peptide inhibitor bound to its target site reveals a binding interface that is amenable to the development of small molecule peptidomimetics that could be used to modulate NER repair activities in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Domain-swapped dimerization of the HIV-1 capsid C-terminal domain

Dmitri Ivanov; Oleg V. Tsodikov; Jeremy Kasanov; Tom Ellenberger; Gerhard Wagner; Tucker Collins

Assembly of the HIV and other retroviruses is primarily driven by the oligomerization of the Gag polyprotein, the major viral structural protein capable of forming virus-like particles even in the absence of all other virally encoded components. Several critical determinants of Gag oligomerization are located in the C-terminal domain of the capsid protein (CA-CTD), which encompasses the most conserved segment in the highly variable Gag protein called the major homology region (MHR). The CA-CTD is thought to function as a dimerization module, although the existing model of CA-CTD dimerization does not readily explain why the conserved residues of the MHR are essential for retroviral assembly. Here we describe an x-ray structure of a distinct domain-swapped variant of the HIV-1 CA-CTD dimer stabilized by a single amino acid deletion. In the domain-swapped structure, the MHR-containing segment forms a major part of the dimerization interface, providing a structural mechanism for the enigmatic function of the MHR in HIV assembly. Our observations suggest that swapping of the MHR segments of adjacent Gag molecules may be a critical intermediate in retroviral assembly.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Structural basis of HIV-1 capsid recognition by PF74 and CPSF6.

Akash Bhattacharya; Steven L. Alam; Thomas Fricke; Kaneil K. Zadrozny; Jaroslaw Sedzicki; Alexander B. Taylor; Borries Demeler; Owen Pornillos; Barbie K. Ganser-Pornillos; Felipe Diaz-Griffero; Dmitri Ivanov; Mark Yeager

Significance Events that occur between entry of the HIV-1 capsid into the cytoplasm of the target cell and the delivery of the viral genetic material into the nucleus constitute some of the less well understood processes in the viral life cycle. We demonstrated that PF74, a small-molecule inhibitor of HIV-1, and the host proteins CPSF6 and NUP153 bind to a preformed pocket within the CA protein hexamers that exist within the assembled capsid. Our results suggest that key features of the CA hexameric lattice remain intact upon docking at the nuclear pore. In addition, low molecular weight ligands that better mimic virus–host, protein–protein interactions at the intersubunit interfaces within the assembled viral capsid may offer novel avenues for therapeutic intervention. Upon infection of susceptible cells by HIV-1, the conical capsid formed by ∼250 hexamers and 12 pentamers of the CA protein is delivered to the cytoplasm. The capsid shields the RNA genome and proteins required for reverse transcription. In addition, the surface of the capsid mediates numerous host–virus interactions, which either promote infection or enable viral restriction by innate immune responses. In the intact capsid, there is an intermolecular interface between the N-terminal domain (NTD) of one subunit and the C-terminal domain (CTD) of the adjacent subunit within the same hexameric ring. The NTD–CTD interface is critical for capsid assembly, both as an architectural element of the CA hexamer and pentamer and as a mechanistic element for generating lattice curvature. Here we report biochemical experiments showing that PF-3450074 (PF74), a drug that inhibits HIV-1 infection, as well as host proteins cleavage and polyadenylation specific factor 6 (CPSF6) and nucleoporin 153 kDa (NUP153), bind to the CA hexamer with at least 10-fold higher affinities compared with nonassembled CA or isolated CA domains. The crystal structure of PF74 in complex with the CA hexamer reveals that PF74 binds in a preformed pocket encompassing the NTD–CTD interface, suggesting that the principal inhibitory target of PF74 is the assembled capsid. Likewise, CPSF6 binds in the same pocket. Given that the NTD–CTD interface is a specific molecular signature of assembled hexamers in the capsid, binding of NUP153 at this site suggests that key features of capsid architecture remain intact upon delivery of the preintegration complex to the nucleus.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structure of the rhesus monkey TRIM5α PRYSPRY domain, the HIV capsid recognition module.

Nikolaos Biris; Yang Yang; Alexander B. Taylor; Andrei Tomashevski; Miao Guo; P. John Hart; Felipe Diaz-Griffero; Dmitri Ivanov

Tripartite motif protein TRIM5α blocks retroviral replication after cell entry, and species-specific differences in its activity are determined by sequence variations within the C-terminal B30.2/PRYSPRY domain. Here we report a high-resolution structure of a TRIM5α PRYSPRY domain, the PRYSPRY of the rhesus monkey TRIM5α that potently restricts HIV infection, and identify features involved in its interaction with the HIV capsid. The extensive capsid-binding interface maps on the structurally divergent face of the protein formed by hypervariable loop segments, confirming that TRIM5α evolution is largely determined by its binding specificity. Interactions with the capsid are mediated by flexible variable loops via a mechanism that parallels antigen recognition by IgM antibodies, a similarity that may help explain some of the unusual functional properties of TRIM5α. Distinctive features of this pathogen-recognition interface, such as structural plasticity conferred by the mobile v1 segment and interaction with multiple epitopes, may allow restriction of divergent retroviruses and increase resistance to capsid mutations.


Cell Reports | 2015

RING Dimerization Links Higher-Order Assembly of TRIM5α to Synthesis of K63-Linked Polyubiquitin

Zinaida Yudina; Amanda Roa; Rory Johnson; Nikolaos Biris; Daniel A. de Souza Aranha Vieira; Vladislav Tsiperson; Natalia Reszka; Alexander B. Taylor; P. John Hart; Borries Demeler; Felipe Diaz-Griffero; Dmitri Ivanov

Members of the tripartite motif (TRIM) protein family of RING E3 ubiquitin (Ub) ligases promote innate immune responses by catalyzing synthesis of polyubiquitin chains linked through lysine 63 (K63). Here, we investigate the mechanism by which the TRIM5α retroviral restriction factor activates Ubc13, the K63-linkage-specific E2. Structural, biochemical, and functional characterization of the TRIM5α:Ubc13-Ub interactions reveals that activation of the Ubc13-Ub conjugate requires dimerization of the TRIM5α RING domain. Our data explain how higher-order oligomerization of TRIM5α, which is promoted by the interaction with the retroviral capsid, enhances the E3 Ub ligase activity of TRIM5α and contributes to its antiretroviral function. This E3 mechanism, in which RING dimerization is transient and depends on the interaction of the TRIM protein with the ligand, is likely to be conserved in many members of the TRIM family and may have evolved to facilitate recognition of repetitive epitope patterns associated with infection.


Retrovirology | 2013

Contribution of oligomerization to the anti-HIV-1 properties of SAMHD1

Alberto Brandariz-Nuñez; Jose Carlos Valle-Casuso; Tommy E. White; Laura A. Nguyen; Akash Bhattacharya; Zhonghua Wang; Borries Demeler; Sarah M. Amie; Caitlin N. Knowlton; Baek Kim; Dmitri Ivanov; Felipe Diaz-Griffero

BackgroundSAMHD1 is a restriction factor that potently blocks infection by HIV-1 and other retroviruses. We have previously demonstrated that SAMHD1 oligomerizes in mammalian cells by immunoprecipitation. Here we investigated the contribution of SAMHD1 oligomerization to retroviral restriction.ResultsStructural analysis of SAMHD1 and homologous HD domain proteins revealed that key hydrophobic residues Y146, Y154, L428 and Y432 stabilize the extensive dimer interface observed in the SAMHD1 crystal structure. Full-length SAMHD1 variants Y146S/Y154S and L428S/Y432S lost their ability to oligomerize tested by immunoprecipitation in mammalian cells. In agreement with these observations, the Y146S/Y154S variant of a bacterial construct expressing the HD domain of human SAMHD1 (residues 109–626) disrupted the dGTP-dependent tetramerization of SAMHD1 in vitro. Tetramerization-defective variants of the full-length SAMHD1 immunoprecipitated from mammalian cells and of the bacterially-expressed HD domain construct lost their dNTPase activity. The nuclease activity of the HD domain construct was not perturbed by the Y146S/Y154S mutations. Remarkably, oligomerization-deficient SAMHD1 variants potently restricted HIV-1 infection.ConclusionsThese results suggested that SAMHD1 oligomerization is not required for the ability of the protein to block HIV-1 infection.


Journal of Molecular Biology | 2013

Rhesus Monkey TRIM5α SPRY Domain Recognizes Multiple Epitopes That Span Several Capsid Monomers on the Surface of the HIV-1 Mature Viral Core

Nikolaos Biris; Andrei Tomashevski; Akash Bhattacharya; Felipe Diaz-Griffero; Dmitri Ivanov

The restriction factor TRIM5α binds to the capsid protein of the retroviral core and blocks retroviral replication. The affinity of TRIM5α for the capsid is a major host tropism determinant of HIV and other primate immunodeficiency viruses, but the molecular interface involved in this host-pathogen interaction remains poorly characterized. Here we use NMR spectroscopy to investigate binding of the rhesus TRIM5α SPRY domain to a selection of HIV capsid constructs. The data are consistent with a model in which one SPRY domain interacts with more than one capsid monomer within the assembled retroviral core. The highly mobile SPRY v1 loop appears to span the gap between neighboring capsid hexamers making interhexamer contacts critical for restriction. The interaction interface is extensive, involves mobile loops and multiple epitopes, and lacks interaction hot spots. These properties, which may enhance resistance of TRIM5α to capsid mutations, result in relatively low affinity of the individual SPRY domains for the capsid, and the TRIM5α-mediated restriction depends on the avidity effect arising from the oligomerization of TRIM5α.

Collaboration


Dive into the Dmitri Ivanov's collaboration.

Top Co-Authors

Avatar

Felipe Diaz-Griffero

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Akash Bhattacharya

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Zhonghua Wang

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Borries Demeler

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Alexander B. Taylor

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Nikolaos Biris

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Brandariz-Nuñez

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Dmytro Kovalskyy

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge