Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitri Kireev is active.

Publication


Featured researches published by Dmitri Kireev.


Nature Chemical Biology | 2011

A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells

Masoud Vedadi; Dalia Barsyte-Lovejoy; Feng Liu; Sylvie Rival-Gervier; Abdellah Allali-Hassani; Viviane Labrie; Tim J. Wigle; Peter A. DiMaggio; Gregory A. Wasney; Alena Siarheyeva; Aiping Dong; Wolfram Tempel; Sun Chong Wang; Xin Chen; Irene Chau; Thomas J. Mangano; Xi Ping Huang; Catherine Simpson; Samantha G. Pattenden; Jacqueline L. Norris; Dmitri Kireev; Ashutosh Tripathy; A. Edwards; Bryan L. Roth; William P. Janzen; Benjamin A. Garcia; Arturas Petronis; James Ellis; Peter J. Brown; Stephen V. Frye

Protein lysine methyltransferases G9a and GLP modulate the transcriptional repression of a variety of genes via dimethylation of Lys9 on histone H3 (H3K9me2) as well as dimethylation of non-histone targets. Here we report the discovery of UNC0638, an inhibitor of G9a and GLP with excellent potency and selectivity over a wide range of epigenetic and non-epigenetic targets. UNC0638 treatment of a variety of cell lines resulted in lower global H3K9me2 levels, equivalent to levels observed for small hairpin RNA knockdown of G9a and GLP with the functional potency of UNC0638 being well separated from its toxicity. UNC0638 markedly reduced the clonogenicity of MCF7 cells, reduced the abundance of H3K9me2 marks at promoters of known G9a-regulated endogenous genes and disproportionately affected several genomic loci encoding microRNAs. In mouse embryonic stem cells, UNC0638 reactivated G9a-silenced genes and a retroviral reporter gene in a concentration-dependent manner without promoting differentiation.


Journal of Medicinal Chemistry | 2009

Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a.

Feng Liu; Xin Chen; Abdellah Allali-Hassani; Amy Quinn; Gregory A. Wasney; Aiping Dong; Dalia Barsyte; Ivona Kozieradzki; Guillermo Senisterra; Irene Chau; Alena Siarheyeva; Dmitri Kireev; Ajit Jadhav; J. Martin Herold; Stephen V. Frye; C.H. Arrowsmith; Peter J. Brown; Anton Simeonov; Masoud Vedadi; Jian Jin

SAR exploration of the 2,4-diamino-6,7-dimethoxyquinazoline template led to the discovery of 8 (UNC0224) as a potent and selective G9a inhibitor. A high resolution X-ray crystal structure of the G9a-8 complex, the first cocrystal structure of G9a with a small molecule inhibitor, was obtained. The cocrystal structure validated our binding hypothesis and will enable structure-based design of novel inhibitors. 8 is a useful tool for investigating the biology of G9a and its roles in chromatin remodeling.


Journal of Medicinal Chemistry | 2010

Protein Lysine Methyltransferase G9a Inhibitors: Design, Synthesis, and Structure Activity Relationships of 2,4-Diamino-7-aminoalkoxy-quinazolines.

Feng Liu; Xin Chen; Abdellah Allali-Hassani; Amy Quinn; Tim J. Wigle; Gregory A. Wasney; Aiping Dong; Guillermo Senisterra; Irene Chau; Alena Siarheyeva; Jacqueline L. Norris; Dmitri Kireev; Ajit Jadhav; J. Martin Herold; William P. Janzen; C.H. Arrowsmith; Stephen V. Frye; Peter J. Brown; Anton Simeonov; Masoud Vedadi; Jian Jin

Protein lysine methyltransferase G9a, which catalyzes methylation of lysine 9 of histone H3 (H3K9) and lysine 373 (K373) of p53, is overexpressed in human cancers. Genetic knockdown of G9a inhibits cancer cell growth, and the dimethylation of p53 K373 results in the inactivation of p53. Initial SAR exploration of the 2,4-diamino-6,7-dimethoxyquinazoline template represented by 3a (BIX01294), a selective small molecule inhibitor of G9a and GLP, led to the discovery of 10 (UNC0224) as a potent G9a inhibitor with excellent selectivity. A high resolution X-ray crystal structure of the G9a-10 complex, the first cocrystal structure of G9a with a small molecule inhibitor, was obtained. On the basis of the structural insights revealed by this cocrystal structure, optimization of the 7-dimethylaminopropoxy side chain of 10 resulted in the discovery of 29 (UNC0321) (Morrison K(i) = 63 pM), which is the first G9a inhibitor with picomolar potency and the most potent G9a inhibitor to date.


Nature Chemical Biology | 2013

Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain

Lindsey I. James; Dalia Barsyte-Lovejoy; Nan Zhong; Liubov Krichevsky; Victoria K. Korboukh; J. Martin Herold; Christopher J. MacNevin; Jacqueline L. Norris; Cari A. Sagum; Wolfram Tempel; Edyta Marcon; Hongbo Guo; Cen Gao; Xi Ping Huang; Shili Duan; Andrew Emili; Jack Greenblatt; Dmitri Kireev; Jian Jin; William P. Janzen; Peter J. Brown; Mark T. Bedford; C.H. Arrowsmith; Stephen V. Frye

We describe the discovery of UNC1215, a potent and selective chemical probe for the methyl-lysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a Kd of 120 nM, competitively displacing mono- or dimethyl-lysine containing peptides, and is greater than 50-fold selective versus other members of the MBT family while also demonstrating selectivity against more than 200 other reader domains examined. X-ray crystallography identified a novel 2:2 polyvalent mode of interaction. In cells, UNC1215 is non-toxic and binds directly to L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular mobility of GFP-L3MBTL3 fusion proteins and point mutants that disrupt the Kme binding function of GFP-L3MBTL3 phenocopy the effects of UNC1215. Finally, UNC1215 demonstrates a novel Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA damage repair and apoptosis.


Journal of Biomolecular Screening | 2010

Screening for Inhibitors of Low-Affinity Epigenetic Peptide-Protein Interactions An AlphaScreen™-Based Assay for Antagonists of Methyl-Lysine Binding Proteins

Tim J. Wigle; J. Martin Herold; Guillermo A. Senisterra; Masoud Vedadi; Dmitri Kireev; Cheryl H. Arrowsmith; Stephen V. Frye; William P. Janzen

The histone code comprises many posttranslational modifications that occur mainly in histone tail peptides. The identity and location of these marks are read by a variety of histone-binding proteins that are emerging as important regulators of cellular differentiation and development and are increasingly being implicated in numerous disease states. The authors describe the development of the first high-throughput screening assay for the discovery of inhibitors of methyl-lysine binding proteins that will be used to initiate a full-scale discovery effort for this broad target class. They focus on the development of an AlphaScreen™-based assay for malignant brain tumor (MBT) domain-containing proteins, which bind to the lower methylation states of lysine residues present in histone tail peptides. This assay takes advantage of the avidity of the AlphaScreen™ beads to clear the hurdle to assay development presented by the low micromolar binding constants of the histone binding proteins for their cognate peptides. The assay is applicable to other families of methyl-lysine binding proteins, and it has the potential to be used in screening efforts toward the discovery of novel small molecules with utility as research tools for cellular reprogramming and ultimately drug discovery.


Journal of Medicinal Chemistry | 2013

Small-Molecule Ligands of Methyl-Lysine Binding Proteins: Optimization of Selectivity for L3MBTL3

Lindsey I. James; Victoria K. Korboukh; Liubov Krichevsky; Brandi M. Baughman; J. Martin Herold; Jacqueline L. Norris; Jian Jin; Dmitri Kireev; William P. Janzen; C.H. Arrowsmith; Stephen V. Frye

Lysine methylation is a key epigenetic mark, the dysregulation of which is linked to many diseases. Small-molecule antagonism of methyl-lysine (Kme) binding proteins that recognize such epigenetic marks can improve our understanding of these regulatory mechanisms and potentially validate Kme binding proteins as drug-discovery targets. We previously reported the discovery of 1 (UNC1215), the first potent and selective small-molecule chemical probe of a methyl-lysine reader protein, L3MBTL3, which antagonizes the mono- and dimethyl-lysine reading function of L3MBTL3. The design, synthesis, and structure-activity relationship studies that led to the discovery of 1 are described herein. These efforts established the requirements for potent L3MBTL3 binding and enabled the design of novel antagonists, such as compound 2 (UNC1679), that maintain in vitro and cellular potency with improved selectivity against other MBT-containing proteins. The antagonists described were also found to effectively interact with unlabeled endogenous L3MBTL3 in cells.


Journal of Medicinal Chemistry | 2014

UNC2025, a Potent and Orally Bioavailable MER/FLT3 Dual Inhibitor

Weihe Zhang; Deborah DeRyckere; Debra Hunter; Jing Liu; Michael A. Stashko; Katherine A. Minson; Christopher T. Cummings; Trevor G. Glaros; Dianne Newton; Susan Sather; Dehui Zhang; Dmitri Kireev; William P. Janzen; H. Shelton Earp; Douglas K. Graham; Stephen V. Frye; Xiaodong Wang

We previously reported a potent small molecule Mer tyrosine kinase inhibitor UNC1062. However, its poor PK properties prevented further assessment in vivo. We report here the sequential modification of UNC1062 to address DMPK properties and yield a new potent and highly orally bioavailable Mer inhibitor, 11, capable of inhibiting Mer phosphorylation in vivo, following oral dosing as demonstrated by pharmaco-dynamic (PD) studies examining phospho-Mer in leukemic blasts from mouse bone marrow. Kinome profiling versus more than 300 kinases in vitro and cellular selectivity assessments demonstrate that 11 has similar subnanomolar activity against Flt3, an additional important target in acute myelogenous leukemia (AML), with pharmacologically useful selectivity versus other kinases examined.


European Journal of Medicinal Chemistry | 2013

UNC1062, a new and potent Mer inhibitor.

Jing Liu; Weihe Zhang; Michael A. Stashko; Deborah DeRyckere; Christopher T. Cummings; Debra Hunter; Chao Yang; Chatura N. Jayakody; Nancy Cheng; Catherine Simpson; Jacqueline Norris-Drouin; Susan Sather; Dmitri Kireev; William P. Janzen; H. Shelton Earp; Douglas K. Graham; Stephen V. Frye; Xiaodong Wang

Abnormal activation of Mer kinase has been implicated in the oncogenesis of many human cancers including acute lymphoblastic and myeloid leukemia, non-small cell lung cancer, and glioblastoma. We have discovered a new family of small molecule Mer inhibitors, pyrazolopyrimidine sulfonamides, that potently inhibit the kinase activity of Mer. Importantly, these compounds do not demonstrate significant hERG activity in the PatchXpress assay. Through structure-activity relationship studies, 35 (UNC1062) was identified as a potent (IC50 = 1.1 nM) and selective Mer inhibitor. When applied to live tumor cells, UNC1062 inhibited Mer phosphorylation and colony formation in soft agar. Given the potential of Mer as a therapeutic target, UNC1062 is a promising candidate for further drug development.


Journal of Chemical Information and Modeling | 2014

Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: Method and benchmark study

C. Da; Dmitri Kireev

Accurate and affordable assessment of ligand–protein affinity for structure-based virtual screening (SB-VS) is a standing challenge. Hence, empirical postdocking filters making use of various types of structure–activity information may prove useful. Here, we introduce one such filter based upon three-dimensional structural protein–ligand interaction fingerprints (SPLIF). SPLIF permits quantitative assessment of whether a docking pose interacts with the protein target similarly to a known ligand and rescues active compounds penalized by poor initial docking scores. An extensive benchmark study on 10 diverse data sets selected from the DUD-E database has been performed in order to evaluate the absolute and relative efficiency of this method. SPLIF demonstrated an overall better performance than relevant standard methods.


Journal of Medicinal Chemistry | 2013

Discovery of Mer Specific Tyrosine Kinase Inhibitors for the Treatment and Prevention of Thrombosis

Weihe Zhang; Andrew L. McIver; Michael A. Stashko; Deborah DeRyckere; Brian R. Branchford; Debra Hunter; Dmitri Kireev; Michael J. Miley; Jacqueline Norris-Drouin; Wendy M. Stewart; Susan Sather; Yingqiu Zhou; Jorge Di Paola; Mischa Machius; William P. Janzen; H. Shelton Earp; Douglas K. Graham; Stephen V. Frye; Xiaodong Wang

The role of Mer kinase in regulating the second phase of platelet activation generates an opportunity to use Mer inhibitors for preventing thrombosis with diminished likelihood for bleeding as compared to current therapies. Toward this end, we have discovered a novel, Mer kinase specific substituted-pyrimidine scaffold using a structure-based drug design and a pseudo ring replacement strategy. The cocrystal structure of Mer with two compounds (7 and 22) possessing distinct activity have been determined. Subsequent SAR studies identified compound 23 (UNC2881) as a lead compound for in vivo evaluation. When applied to live cells, 23 inhibits steady-state Mer kinase phosphorylation with an IC50 value of 22 nM. Treatment with 23 is also sufficient to block EGF-mediated stimulation of a chimeric receptor containing the intracellular domain of Mer fused to the extracellular domain of EGFR. In addition, 23 potently inhibits collagen-induced platelet aggregation, suggesting that this class of inhibitors may have utility for prevention and/or treatment of pathologic thrombosis.

Collaboration


Dive into the Dmitri Kireev's collaboration.

Top Co-Authors

Avatar

Stephen V. Frye

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

William P. Janzen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Wang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Michael A. Stashko

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Deborah DeRyckere

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Douglas K. Graham

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Weihe Zhang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

H. Shelton Earp

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jacqueline Norris-Drouin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jacqueline L. Norris

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge