Dmitri Kuzmin
Technical University of Dortmund
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dmitri Kuzmin.
Journal of Computational and Applied Mathematics | 2010
Dmitri Kuzmin
A new approach to slope limiting for discontinuous Galerkin methods on arbitrary meshes is introduced. A local Taylor basis is employed to express the approximate solution in terms of cell averages and derivatives at cell centroids. In contrast to traditional slope limiting techniques, the upper and lower bounds for admissible variations are defined using the maxima/minima of centroid values over the set of elements meeting at a vertex. The correction factors are determined by a vertex-based counterpart of the Barth-Jespersen limiter. The coefficients in the Taylor series expansion are limited in a hierarchical manner, starting with the highest-order derivatives. The loss of accuracy at smooth extrema is avoided by taking the maximum of correction factors for derivatives of order p>=1 and higher. No free parameters, oscillation detectors, or troubled cell markers are involved. Numerical examples are presented for 2D transport problems discretized using a DG method.
Archive | 2005
Dmitri Kuzmin; Matthias Möller
An algebraic approach to the design of multidimensional high-resolution schemes is introduced and elucidated in the finite element context. A centered space discretization of unstable convective terms is rendered local extremum diminishing by a conservative elimination of negative off-diagonal coefficients from the discrete transport operator. This modification leads to an upwind-biased low-order scheme which is nonoscillatory but overly diffusive. In order to reduce the incurred error, a limited amount of compensating antidiffusion is added in regions where the solution is sufficiently smooth. Two closely related flux correction strategies are presented. The first one is based on a multidimensional generalization of total variation diminishing (TVD) schemes, whereas the second one represents an extension of the FEM-FCT paradigm to implicit time-stepping. Nonlinear algebraic systems are solved by an iterative defect correction scheme preconditioned by the low-order evolution operator which enjoys the M-matrix property. The dffusive and antidiffusive terms are represented as a sum of antisymmetric internodal fluxes which are constructed edge-by-edge and inserted into the global defect vector. The new methodology is applied to scalar transport equations discretized in space by the Galerkin method. Its performance is illustrated by numerical examples for 2D benchmark problems.
Journal of Computational Physics | 2009
Dmitri Kuzmin
A new approach to the design of flux-corrected transport (FCT) algorithms for continuous (linear/multilinear) finite element approximations of convection-dominated transport problems is pursued. The algebraic flux correction paradigm is revisited, and a family of nonlinear high-resolution schemes based on Zalesaks fully multidimensional flux limiter is considered. In order to reduce the cost of flux correction, the raw antidiffusive fluxes are linearized about an auxiliary solution computed by a high- or low-order scheme. By virtue of this linearization, the costly computation of solution-dependent correction factors is to be performed just once per time step, and there is no need for iterative defect correction if the governing equation is linear. A predictor-corrector algorithm is proposed as an alternative to the hybridization of high- and low-order fluxes. Three FEM-FCT schemes based on the Runge-Kutta, Crank-Nicolson, and backward Euler time-stepping are introduced. A detailed comparative study is performed for linear convection-diffusion equations.
International Journal of Computing | 2007
Dmitri Kuzmin; Otto Mierka; Stefan Turek
A finite element implementation of the standard κ-e turbulence model, including Chiens Low-Reynolds number modification is presented. Special emphasis is laid on the numerical treatment of wall boundary conditions. In particular, logarithmic wall functions are used to derive Neumann boundary conditions for the standard κ-e model. The resulting solutions are superior to those obtained using wall functions implemented as Dirichlet boundary conditions and comparable to simulation results produced by a Low-Reynolds number κ-e model. Two representative benchmark problems (channel flow and backward facing step) are used to compare the performance of different algorithms in 3D and to investigate the influence of the near-wall treatment.
Archive | 2005
Dmitri Kuzmin; Matthias Möller
Algebraic flux correction schemes of TVD and FCT type are extended to systems of hyperbolic conservation laws. The group finite element formulation is employed for the treatment of the compressible Euler equations. An efficient algorithm is proposed for the edge-by-edge matrix assembly. A generalization of Roe’s approximate Riemann solver is derived by rendering all off-diagonal matrix blocks positive semi-definite. Another usable low-order method is constructed by adding scalar artificial viscosity proportional to the spectral radius of the cumulative Roe matrix. The limiting of antidiffusive fluxes is performed using a transformation to the characteristic variables or a suitable synchronization of correction factors for the conservative ones. The outer defect correction loop is equipped with a block-diagonal preconditioner so as to decouple the discretized Euler equations and solve them in a segregated fashion. As an alternative, a strongly coupled solution strategy (global BiCGSTAB method with a block-Gaus-Seidel preconditioner) is introduced for applications which call for the use of large time steps. Various algorithmic aspects including the implementation of characteristic boundary conditions are addressed. Simulation results are presented for inviscid flows in a wide range of Mach numbers.
Journal of Computational Physics | 2014
Dmitri Kuzmin
In this paper, we present a collection of algorithmic tools for constraining high-order discontinuous Galerkin (DG) approximations to hyperbolic conservation laws. We begin with a review of hierarchical slope limiting techniques for explicit DG methods. A new interpretation of these techniques leads to an unconditionally stable implicit algorithm for steady-state computations. The implicit global problem for the mean values (coarse scales) has the computational structure of a finite volume method. The constrained derivatives (fine scales) are obtained by solving small local problems. The interscale transfer operators provide a two-way iterative coupling between the solutions to the global and local problems. Another highlight of this paper is a new approach to compatible gradient limiting for the Euler equations of gas dynamics. After limiting the conserved quantities, the gradients of the velocity and energy density are constrained in a consistent manner. Numerical studies confirm the accuracy and robustness of the proposed algorithms.
Archive | 2012
Dmitri Kuzmin
Flux limiting for hyperbolic systems requires a careful generalization of the design principles and algorithms introduced in the context of scalar conservation laws. In this chapter, we develop FCT-like algebraic flux correction schemes for the Euler equations of gas dynamics. In particular, we discuss the construction of artificial viscosity operators, the choice of variables to be limited, and the transformation of antidiffusive fluxes. An a posteriori control mechanism is implemented to make the limiter failsafe. The numerical treatment of initial and boundary conditions is discussed in some detail. The initialization is performed using an FCT-constrained L 2 projection. The characteristic boundary conditions are imposed in a weak sense, and an approximate Riemann solver is used to evaluate the fluxes on the boundary. We also present an unconditionally stable semi-implicit time-stepping scheme and an iterative solver for the fully discrete problem. The results of a numerical study indicate that the nonlinearity and non-differentiability of the flux limiter do not inhibit steady state convergence even in the case of strongly varying Mach numbers. Moreover, the convergence rates improve as the pseudo-time step is increased.
Journal of Computational and Applied Mathematics | 2012
Dmitri Kuzmin
This paper is concerned with the development of general-purpose algebraic flux correction schemes for continuous (linear and multilinear) finite elements. In order to enforce the discrete maximum principle (DMP), we modify the standard Galerkin discretization of a scalar transport equation by adding diffusive and antidiffusive fluxes. The result is a nonlinear algebraic system satisfying the DMP constraint. An estimate based on variational gradient recovery leads to a linearity-preserving limiter for the difference between the function values at two neighboring nodes. A fully multidimensional version of this scheme is obtained by taking the sum of local bounds and constraining the total flux. This new approach to algebraic flux correction provides a unified treatment of stationary and time-dependent problems. Moreover, the same algorithm is used to limit convective fluxes, anisotropic diffusion operators, and the antidiffusive part of the consistent mass matrix. The nonlinear algebraic system associated with the constrained Galerkin scheme is solved using fixed-point defect correction or a nonlinear SSOR method. A dramatic improvement of nonlinear convergence rates is achieved with the technique known as Anderson acceleration (or Anderson mixing). It blends a number of last iterates in a GMRES fashion, which results in a Broyden-like quasi-Newton update. The numerical behavior of the proposed algorithms is illustrated by a grid convergence study for convection-dominated transport problems and anisotropic diffusion equations in 2D.
Journal of Computational Physics | 2010
Dmitri Kuzmin; Matthias Möller; John N. Shadid; Mikhail Yu. Shashkov
A new approach to flux limiting for systems of conservation laws is presented. The Galerkin finite element discretization/L^2 projection is equipped with a failsafe mechanism that prevents the birth and growth of spurious local extrema. Within the framework of a synchronized flux-corrected transport (FCT) algorithm, the velocity and pressure fields are constrained using node-by-node transformations from the conservative to the primitive variables. An additional correction step is included to ensure that all the quantities of interest (density, velocity, pressure) are bounded by the physically admissible low-order values. The result is a conservative and bounded scheme with low numerical diffusion. The new failsafe FCT limiter is integrated into a high-resolution finite element scheme for the Euler equations of gas dynamics. Also, bounded L^2 projection operators for conservative interpolation/initialization are designed. The performance of the proposed limiting strategy and the need for a posteriori control of flux-corrected solutions are illustrated by numerical examples.
Journal of Computational and Applied Mathematics | 2013
Robert Strehl; Andriy Sokolov; Dmitri Kuzmin; Dirk Horstmann; Stefan Turek
We present an implicit finite element method for a class of chemotaxis models in three spatial dimensions. The proposed algorithm is designed to maintain mass conservation and to guarantee positivity of the cell density. To enforce the discrete maximum principle, the standard Galerkin discretization is constrained using a local extremum diminishing flux limiter. To demonstrate the efficiency and robustness of this approach, we solve blow-up problems in a 3D chemostat domain. To give a flavor of more complex and realistic chemotactic applications, we investigate the pattern dynamics and aggregating behavior of the bacteria Escherichia coli and Salmonella typhimurium. The obtained numerical results are in good qualitative agreement with theoretical studies and experimental data reported in the literature.