Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitri R. Davydov is active.

Publication


Featured researches published by Dmitri R. Davydov.


Expert Opinion on Drug Metabolism & Toxicology | 2008

Allosteric P450 mechanisms: multiple binding sites, multiple conformers, or both?

Dmitri R. Davydov; James R. Halpert

According to the initial hypothesis on the mechanisms of cooperativity in drug-metabolizing cytochromes P450, a loose fit of a single substrate molecule in the P450 active site results in a requirement for the binding of multiple ligand molecules for efficient catalysis. Although simultaneous occupancy of the active site by multiple ligands is now well established, there is increasing evidence that the mechanistic basis of cooperativity also involves an important ligand-induced conformational transition. Moreover, recent studies demonstrate that the conformational heterogeneity of the enzyme is stabilized by ligand-dependent interactions of several P450 molecules. Application of the concept of an oligomeric allosteric enzyme to microsomal cytochromes P450 in combination with a general paradigm of multiple ligand occupancy of the active site provides an excellent explanation for complex manifestations of the atypical kinetic behavior of the enzyme.


Archives of Biochemistry and Biophysics | 1995

High-pressure-induced transitions in microsomal cytochrome P450 2B4 in solution: Evidence for conformational inhomogeneity in the oligomers

Dmitri R. Davydov; Eric Deprez; Gaston Hui Bon Hoa; Tatiana V. Knyushko; Galina P. Kuznetsova; Yakov M. Koen; Alexander I. Archakov

Pressure-induced changes in ferric P450 2B4 (LM2) were studied as a function of benzphetamine concentration (0.05 divided by 2 mM) and state of aggregation of the hemoprotein in solution. Application of factor analysis to the spectral changes in the Soret region allowed us to resolve two particular pressure-induced processes in 2B4 oligomers. The first process was identified as the conversion of the low-spin P450 into the P420 state. At 25 degrees C it was followed by decay (bleaching) of about 50% of the newly formed P420. The second process was a pressure-induced high- to low-spin shift. Both transitions were reversible, except the hemoprotein bleaching. The amplitude of the P450-->P420 transition accounted for 67 +/- 5% of the total hemoprotein content. Furthermore, the fraction of the hemoprotein exposed to spin equilibrium was not affected by the P450-->P420 conversion and was estimated to be only about 31 +/- 5% of the total hemoprotein content. After the dissociation of the oligomers by 0.2% Triton N-101, the inhomogeneity vanished: 95% of the monomers were involved in the P450-->P420 transition (delta V degrees = -86 ml/mol) followed by intense bleaching of the hemoprotein. This agrees with our earlier observations on the reduced carbonyl complex of P450 2B4 and suggests some conformational difference between subunits in P450 LM2 oligomers. The parameters of the P450-->P420 conversion (delta V degrees = -32 ml/mol, P1/2 = 1560 bar) show no dependency on the substrate concentration. Analysis of the pressure-induced spin shift versus benzphetamine concentration shows this transition to be caused mainly by changes in the spin equilibrium of both substrate-bound (delta V degrees = -49 ml/mol) and substrate-free (delta V degrees = -21 ml/mol) hemoprotein, whereas the substrate binding step itself has a very weak pressure dependency (delta V degrees = -8 ml/mol).


Expert Opinion on Drug Metabolism & Toxicology | 2011

Microsomal monooxygenase as a multienzyme system: the role of P450-P450 interactions.

Dmitri R. Davydov

Introduction: There is increasing evidence of physical interactions (association) among cytochromes P450 in the membranes of the endoplasmic reticulum. Functional consequences of these interactions are often underestimated. Areas covered: This article provides a comprehensive overview of available experimental material regarding P450-P450 interactions. Special emphasis is given to the interactions between different P450 species and to the functional consequences of homo- and heterooligomerization. Expert opinion: Recent advances provide conclusive evidence for a substantial degree of P450 oligomerization in membranes. Interactions between different P450 species resulting in the formation of mixed oligomers with altered activity and substrate specificity have been demonstrated clearly. There are important indications that oligomerization impedes electron flow to a fraction of the P450 population, which renders some P450 species nonfunctional. Functional consequences of P450-P450 interactions make the integrated properties of the microsomal monooxygenase remarkably different from a simple summation of the properties of the individual P450 species. This complexity compromises the predictive power of the current in vitro models of drug metabolism and warrants an urgent need for development of new model systems that consider the interactions of multiple P450 species.


Journal of Biological Chemistry | 2012

Peripheral Ligand-binding Site in Cytochrome P450 3A4 Located with Fluorescence Resonance Energy Transfer (FRET)

Dmitri R. Davydov; Jessica A. O. Rumfeldt; Elena Sineva; Harshica Fernando; Nadezhda Y. Davydova; James R. Halpert

Background: Cytochrome P450 3A4 (CYP3A4) can bind several substrate molecules simultaneously and exhibits cooperativity. Results: Ligand binding in the active site is preceded by functionally important interactions at a distinct peripheral site. Conclusion: The mechanism of cooperativity involves a ligand-induced allosteric transition. Significance: Allosteric mechanism suggested by our results transforms the view of the grounds and significance of CYP3A4 cooperativity. The mechanisms of ligand binding and allostery in the major human drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) were explored with fluorescence resonance energy transfer (FRET) using a laser dye, fluorol-7GA (F7GA), as a model substrate. Incorporation into the enzyme of a thiol-reactive FRET probe, pyrene iodoacetamide, allowed us to monitor the binding by FRET from the pyrene donor to the F7GA acceptor. Cooperativity of the interactions detected by FRET indicates that the enzyme possesses at least two F7GA-binding sites that have different FRET efficiencies and are therefore widely separated. To probe spatial localization of these sites, we studied FRET in a series of mutants bearing pyrene iodoacetamide at different positions, and we measured the distances from each of the sites to the donor. Our results demonstrate the presence of a high affinity binding site at the enzyme periphery. Analysis of the set of measured distances complemented with molecular modeling and docking allowed us to pinpoint the most probable peripheral site. It is located in the vicinity of residues 217–220, similar to the position of the progesterone molecule bound at the distal surface of the CYP3A4 in a prior x-ray crystal structure. Peripheral binding of F7GA causes a substantial spin shift and serves as a prerequisite for the binding in the active site. This is the first indication of functionally important ligand binding outside of the active site in cytochromes P450. The findings strongly suggest that the mechanisms of CYP3A4 cooperativity involve a conformational transition triggered by an allosteric ligand.


Biochemical Journal | 2013

Pivotal role of P450–P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone

Dmitri R. Davydov; Nadezhda Y. Davydova; Elena V. Sineva; Irina Kufareva; James R. Halpert

We investigated the relationship between oligomerization of CYP3A4 (cytochrome P450 3A4) and its response to ANF (α-naphthoflavone), a prototypical heterotropic activator. The addition of ANF resulted in over a 2-fold increase in the rate of CYP3A4-dependent debenzylation of 7-BFC [7-benzyloxy-4-(trifluoromethyl)coumarin] in HLM (human liver microsomes), but failed to produce activation in BD Supersomes or Baculosomes containing recombinant CYP3A4 and NADPH-CPR (cytochrome P450 reductase). However, incorporation of purified CYP3A4 into Supersomes containing only recombinant CPR reproduced the behaviour observed with HLM. The activation in this system was dependent on the surface density of the enzyme. Although no activation was detectable at an L/P (lipid/P450) ratio ≥750, it reached 225% at an L/P ratio of 140. To explore the relationship between this effect and CYP3A4 oligomerization, we probed P450-P450 interactions with a new technique that employs LRET (luminescence resonance energy transfer). The amplitude of LRET in mixed oligomers of the haem protein labelled with donor and acceptor fluorophores exhibited a sigmoidal dependence on the surface density of CYP3A4 in Supersomes™. The addition of ANF eliminated this sigmoidal character and increased the degree of oligomerization at low enzyme concentrations. Therefore the mechanisms of CYP3A4 allostery with ANF involve effector-dependent modulation of P450-P450 interactions.


Journal of Biological Chemistry | 2015

Interactions among Cytochromes P450 in Microsomal Membranes: OLIGOMERIZATION OF CYTOCHROMES P450 3A4, 3A5, AND 2E1 AND ITS FUNCTIONAL CONSEQUENCES*

Dmitri R. Davydov; Nadezhda Y. Davydova; Elena V. Sineva; James R. Halpert

Background: There are multiple cytochrome P450 species co-localized in the endoplasmic reticulum. Results: Membrane-bound cytochromes P450 3A4, 3A5, and 2E1 associate into heteromeric complexes, where the properties of the individual enzymes are considerably modified. Conclusion: The properties of the P450 ensemble cannot be predicted by summation of the properties of the individual enzymes. Significance: We disclose a mechanism of regulatory cross-talk between multiple P450 species through hetero-oligomerization. The body of evidence of physiologically relevant P450-P450 interactions in microsomal membranes continues to grow. Here we probe oligomerization of human CYP3A4, CYP3A5, and CYP2E1 in microsomal membranes. Using a technique based on luminescence resonance energy transfer, we demonstrate that all three proteins are subject to a concentration-dependent equilibrium between the monomeric and oligomeric states. We also observed the formation of mixed oligomers in CYP3A4/CYP3A5, CYP3A4/CYP2E1, and CYP3A5/CYP2E1 pairs and demonstrated that the association of either CYP3A4 or CYP3A5 with CYP2E1 causes activation of the latter enzyme. Earlier we hypothesized that the intersubunit interface in CYP3A4 oligomers is similar to that observed in the crystallographic dimers of some microsomal drug-metabolizing cytochromes P450 (Davydov, D. R., Davydova, N. Y., Sineva, E. V., Kufareva, I., and Halpert, J. R. (2013) Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochem. J. 453, 219–230). Here we report the results of intermolecular cross-linking of CYP3A4 oligomers with thiol-reactive bifunctional reagents as well as the luminescence resonance energy transfer measurements of interprobe distances in the oligomers of labeled CYP3A4 single-cysteine mutants. The results provide compelling support for the physiological relevance of the dimer-specific peripheral ligand-binding site observed in certain CYP3A4 structures. According to our interpretation, these results reveal an important general mechanism that regulates the activity and substrate specificity of the cytochrome P450 ensemble through interactions between multiple P450 species. As a result of P450-P450 cross-talk, the catalytic properties of the cytochrome P450 ensemble cannot be predicted by simple summation of the properties of the individual P450 species.


Archives of Biochemistry and Biophysics | 2010

Rational Engineering of Cytochromes P450 2B6 and 2B11 for Enhanced Stability: Insights Into Structural Importance of Residue 334

Jyothi C. Talakad; P. Ross Wilderman; Dmitri R. Davydov; Santosh Kumar; James R. Halpert

Rational mutagenesis was used to improve the thermal stability of human cytochrome P450 2B6 and canine P450 2B11. Comparison of the amino acid sequences revealed seven sites that are conserved between the stable 2B1 and 2B4 but different from those found in the less stable 2B6 and 2B11. P334S was the only mutant that showed increased heterologous expression levels and thermal stability in both 2B6 and 2B11. The mechanism of this effect was explored with pressure-perturbation spectroscopy. Compressibility of the heme pocket in variants of all four CYP2B enzymes containing proline at position 334 are characterized by lower compressibility than their more stable serine 334 counterpart. Therefore, the stabilizing effect of P334S is associated with increased conformational flexibility in the region of the heme pocket. Improved stability of P334S 2B6 and 2B11 may facilitate the studies of these enzymes by X-ray crystallography and biophysical techniques.


Biochemistry | 2015

Concurrent cooperativity and substrate inhibition in the epoxidation of carbamazepine by cytochrome P450 3A4 active site mutants inspired by molecular dynamics simulations.

Christian S. Müller; Tim Knehans; Dmitri R. Davydov; Patricia L. Bounds; Ursula von Mandach; James R. Halpert; Amedeo Caflisch; Willem H. Koppenol

Cytochrome P450 3A4 (CYP3A4) is the major human P450 responsible for the metabolism of carbamazepine (CBZ). To explore the mechanisms of interactions of CYP3A4 with this anticonvulsive drug, we carried out multiple molecular dynamics (MD) simulations, starting with the complex of CYP3A4 manually docked with CBZ. On the basis of these simulations, we engineered CYP3A4 mutants I369F, I369L, A370V, and A370L, in which the productive binding orientation was expected to be stabilized, thus leading to increased turnover of CBZ to the 10,11-epoxide product. In addition, we generated CYP3A4 mutant S119A as a control construct with putative destabilization of the productive binding pose. Evaluation of the kinetics profiles of CBZ epoxidation demonstrate that CYP3A4-containing bacterial membranes (bactosomes) as well as purified CYP3A4 (wild-type and mutants I369L/F) exhibit substrate inhibition in reconstituted systems. In contrast, mutants S119A and A370V/L exhibit S-shaped profiles that are indicative of homotropic cooperativity. MD simulations with two to four CBZ molecules provide evidence that the substrate-binding pocket of CYP3A4 can accommodate more than one molecule of CBZ. Analysis of the kinetics profiles of CBZ metabolism with a model that combines the formalism of the Hill equation with an allowance for substrate inhibition demonstrates that the mechanism of interactions of CBZ with CYP3A4 involves multiple substrate-binding events (most likely three). Despite the retention of the multisite binding mechanism in the mutants, functional manifestations reveal an exquisite sensitivity to even minor structural changes in the binding pocket that are introduced by conservative substitutions such as I369F, I369L, and A370V.


PLOS ONE | 2013

A Large-Scale Allosteric Transition in Cytochrome P450 3A4 Revealed by Luminescence Resonance Energy Transfer (LRET)

Elena V. Sineva; Jessica A. O. Rumfeldt; James R. Halpert; Dmitri R. Davydov

Effector-induced allosteric transitions in cytochrome P450 3A4 (CYP3A4) were investigated by luminescence resonance energy transfer (LRET) between two SH-reactive probes attached to various pairs of distantly located cysteine residues, namely the double-cysteine mutants CYP3A4(C64/C468), CYP3A4(C377/C468) and CYP3A4(C64/C121). Successive equimolar labeling of these proteins with the phosphorescent probe erythrosine iodoacetamide (donor) and the near-infrared fluorophore DY-731 maleimide (acceptor) allowed us to establish donor/acceptor pairs sensitive to conformational motions. The interactions of all three double-labeled mutants with the allosteric activators α-naphthoflavone and testosterone resulted in an increase in the distance between the probes. A similar effect was elicited by cholesterol. These changes in distance vary from 1.3 to 8.5 Å, depending on the position of the donor/acceptor pair and the nature of the effector. In contrast, the changes in the interprobe distance caused by such substrates as bromocriptine or 1-pyrenebutanol were only marginal. Our results provide a decisive support to the paradigm of allosteric modulation of CYP3A4 and indicate that the conformational transition caused by allosteric effectors increases the spatial separation between the beta-domain of the enzyme (bearing residues Cys64 and Cys377) and the alpha-domain, where Cys121 and Cys468 are located.


Xenobiotica | 2011

Multiple substrate-binding sites are retained in cytochrome P450 3A4 mutants with decreased cooperativity.

Harshica Fernando; Jessica A. O. Rumfeldt; Nadezhda Y. Davydova; James R. Halpert; Dmitri R. Davydov

The basis of decreased cooperativity in substrate binding in the cytochrome P450 3A4 mutants F213W, F304W, and L211F/D214E was studied with fluorescence resonance energy transfer and absorbance spectroscopy. Although in the wild type enzyme, the absorbance changes reflecting the interactions with 1-pyrenebutanol exhibit a Hill coefficient (nH) around 1.7 (S50 = 11.7 µM), the mutants showed no cooperativity (nH ≤ 1.1) with unchanged S50 values. Contrary to the premise that the mutants lack one of the two binding sites, the mutants exhibited at least two substrate binding events. The high-affinity interaction is characterized by a dissociation constant (KD) ≤ 1.0 µM, whereas the KD of the second binding has the same magnitude as the S50. Theoretical analysis of a two-step binding model suggests that nH values may vary from 1.1 to 2.2 depending on the amplitude of the spin shift caused by the first binding event. Alteration of cooperativity in the mutants is caused by a partial displacement of the “spin-shifting” step. Although in the wild type the spin shift occurs in the ternary complex only, the mutants exhibit some spin shift on binding of the first substrate molecule.

Collaboration


Dive into the Dmitri R. Davydov's collaboration.

Top Co-Authors

Avatar

James R. Halpert

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Elena V. Sineva

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harshica Fernando

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Santosh Kumar

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jyothi C. Talakad

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamara Tsalkova

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Alexandra E. Botchkareva

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge