Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitri V. Talapin is active.

Publication


Featured researches published by Dmitri V. Talapin.


Chemical Reviews | 2010

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications

Dmitri V. Talapin; Jong-Soo Lee; Maksym V. Kovalenko; Elena V. Shevchenko

Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: [email protected]. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389


Nature | 2006

STRUCTURAL DIVERSITY IN BINARY NANOPARTICLE SUPERLATTICES

Elena V. Shevchenko; Dmitri V. Talapin; Nicholas A. Kotov; Stephen O'Brien; Christopher B. Murray

Assembly of small building blocks such as atoms, molecules and nanoparticles into macroscopic structures—that is, ‘bottom up’ assembly—is a theme that runs through chemistry, biology and material science. Bacteria, macromolecules and nanoparticles can self-assemble, generating ordered structures with a precision that challenges current lithographic techniques. The assembly of nanoparticles of two different materials into a binary nanoparticle superlattice (BNSL) can provide a general and inexpensive path to a large variety of materials (metamaterials) with precisely controlled chemical composition and tight placement of the components. Maximization of the nanoparticle packing density has been proposed as the driving force for BNSL formation, and only a few BNSL structures have been predicted to be thermodynamically stable. Recently, colloidal crystals with micrometre-scale lattice spacings have been grown from oppositely charged polymethyl methacrylate spheres. Here we demonstrate formation of more than 15 different BNSL structures, using combinations of semiconducting, metallic and magnetic nanoparticle building blocks. At least ten of these colloidal crystalline structures have not been reported previously. We demonstrate that electrical charges on sterically stabilized nanoparticles determine BNSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.


Science | 2009

Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands

Maksym V. Kovalenko; Marcus Scheele; Dmitri V. Talapin

Colloidal Nanocrystal Compounds Colloidal nanocrystals have properties that fall between those of the individual atoms but also differ from bulk due to confinement effects. They can thus be thought of as analogs of atoms, and, like atoms, there is a desire to bond together neighboring particles, which will also affect their properties. During synthesis, organic ligands are used to prevent the colloidal nanocrystals from growing too large or agglomerating, but these ligands result in poor interparticle coupling and communication. Kovalenko et al. (p. 1417) show that chalcogenide complexes (compounds based on S, Se, or Te) can effectively link together neighboring particles. Upon gentle heating, the ligands can be converted from insulating to semiconducting without altering the chemistry of the nanocrystals. Chalcogenide-based ligands are used to link colloidal nanocrystals together and can be converted into semiconducting complexes. Similar to the way that atoms bond to form molecules and crystalline structures, colloidal nanocrystals can be combined together to form larger assemblies. The properties of these structures are determined by the properties of individual nanocrystals and by their interactions. The insulating nature of organic ligands typically used in nanocrystal synthesis results in very poor interparticle coupling. We found that various molecular metal chalcogenide complexes can serve as convenient ligands for colloidal nanocrystals and nanowires. These ligands can be converted into semiconducting phases upon gentle heat treatment, generating inorganic nanocrystal solids. The utility of the inorganic ligands is demonstrated for model systems, including highly conductive arrays of gold nanocrystals capped with Sn2S64– ions and field-effect transistors on cadmium selenide nanocrystals.


Nature Nanotechnology | 2011

Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays

Jong-Soo Lee; Maksym V. Kovalenko; Jing Huang; Dae Sung Chung; Dmitri V. Talapin

Flexible, thin-film electronic and optoelectronic devices typically involve a trade-off between performance and fabrication cost. For example, solution-based deposition allows semiconductors to be patterned onto large-area substrates to make solar cells and displays, but the electron mobility in solution-deposited semiconductor layers is much lower than in semiconductors grown at high temperatures from the gas phase. Here, we report band-like electron transport in arrays of colloidal cadmium selenide nanocrystals capped with the molecular metal chalcogenide complex In(2)Se(4)(2-), and measure electron mobilities as high as 16 cm(2) V(-1) s(-1), which is about an order of magnitude higher than in the best solution-processed organic and nanocrystal devices so far. We also use CdSe/CdS core-shell nanoparticles with In(2)Se(4)(2-) ligands to build photodetectors with normalized detectivity D* > 1 × 10(13) Jones (I Jones = 1 cm Hz(1/2) W(-1)), which is a record for II-VI nanocrystals. Our approach does not require high processing temperatures, and can be extended to different nanocrystals and inorganic surface ligands.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals

Shiwei Wu; Gang Han; Delia J. Milliron; Shaul Aloni; Virginia Altoe; Dmitri V. Talapin; Bruce E. Cohen; P. James Schuck

The development of probes for single-molecule imaging has dramatically facilitated the study of individual molecules in cells and other complex environments. Single-molecule probes ideally exhibit good brightness, uninterrupted emission, resistance to photobleaching, and minimal spectral overlap with cellular autofluorescence. However, most single-molecule probes are imperfect in several of these aspects, and none have been shown to possess all of these characteristics. Here we show that individual lanthanide-doped upconverting nanoparticles (UCNPs)—specifically, hexagonal phase NaYF4 (β-NaYF4) nanocrystals with multiple Yb3+ and Er3+ dopants—emit bright anti-Stokes visible upconverted luminescence with exceptional photostability when excited by a 980-nm continuous wave laser. Individual UCNPs exhibit no on/off emission behavior, or “blinking,” down to the millisecond timescale, and no loss of intensity following an hour of continuous excitation. Amphiphilic polymer coatings permit the transfer of hydrophobic UCNPs into water, resulting in individual water-soluble nanoparticles with undiminished photophysical characteristics. These UCNPs are endocytosed by cells and show strong upconverted luminescence, with no measurable anti-Stokes background autofluorescence, suggesting that UCNPs are ideally suited for single-molecule imaging experiments.


Journal of the American Chemical Society | 2011

Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2–, HS–, Se2–, HSe–, Te2–, HTe–, TeS32–, OH–, and NH2– as Surface Ligands

Angshuman Nag; Maksym V. Kovalenko; Jong-Soo Lee; Wenyong Liu; Boris Spokoyny; Dmitri V. Talapin

All-inorganic colloidal nanocrystals were synthesized by replacing organic capping ligands on chemically synthesized nanocrystals with metal-free inorganic ions such as S(2-), HS(-), Se(2-), HSe(-), Te(2-), HTe(-), TeS(3)(2-), OH(-) and NH(2)(-). These simple ligands adhered to the NC surface and provided colloidal stability in polar solvents. The versatility of such ligand exchange has been demonstrated for various semiconductor and metal nanocrystals of different size and shape. We showed that the key aspects of Pearsons hard and soft acids and bases (HSAB) principle, originally developed for metal coordination compounds, can be applied to the bonding of molecular species to the nanocrystal surface. The use of small inorganic ligands instead of traditional ligands with long hydrocarbon tails facilitated the charge transport between individual nanocrystals and opened up interesting opportunities for device integration of colloidal nanostructures.


ACS Nano | 2015

Prospects of Nanoscience with Nanocrystals

Maksym V. Kovalenko; Liberato Manna; Andreu Cabot; Zeger Hens; Dmitri V. Talapin; Cherie R. Kagan; Victor I. Klimov; Andrey L. Rogach; Peter Reiss; Delia J. Milliron; Philippe Guyot-Sionnnest; Gerasimos Konstantatos; Wolfgang J. Parak; Taeghwan Hyeon; Brian A. Korgel; Christopher B. Murray; W. Heiss

Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Todays strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.


Nature Materials | 2016

The surface science of nanocrystals

Michael A. Boles; Daishun Ling; Taeghwan Hyeon; Dmitri V. Talapin

All nanomaterials share a common feature of large surface-to-volume ratio, making their surfaces the dominant player in many physical and chemical processes. Surface ligands - molecules that bind to the surface - are an essential component of nanomaterial synthesis, processing and application. Understanding the structure and properties of nanoscale interfaces requires an intricate mix of concepts and techniques borrowed from surface science and coordination chemistry. Our Review elaborates these connections and discusses the bonding, electronic structure and chemical transformations at nanomaterial surfaces. We specifically focus on the role of surface ligands in tuning and rationally designing properties of functional nanomaterials. Given their importance for biomedical (imaging, diagnostics and therapeutics) and optoelectronic (light-emitting devices, transistors, solar cells) applications, we end with an assessment of application-targeted surface engineering.


Nature | 2009

Quasicrystalline order in self-assembled binary nanoparticle superlattices

Dmitri V. Talapin; Elena V. Shevchenko; Maryna I. Bodnarchuk; Xingchen Ye; Jun Chen; Christopher B. Murray

The discovery of quasicrystals in 1984 changed our view of ordered solids as periodic structures and introduced new long-range-ordered phases lacking any translational symmetry. Quasicrystals permit symmetry operations forbidden in classical crystallography, for example five-, eight-, ten- and 12-fold rotations, yet have sharp diffraction peaks. Intermetallic compounds have been observed to form both metastable and energetically stabilized quasicrystals; quasicrystalline order has also been reported for the tantalum telluride phase with an approximate Ta1.6Te composition. Later, quasicrystals were discovered in soft matter, namely supramolecular structures of organic dendrimers and tri-block copolymers, and micrometre-sized colloidal spheres have been arranged into quasicrystalline arrays by using intense laser beams that create quasi-periodic optical standing-wave patterns. Here we show that colloidal inorganic nanoparticles can self-assemble into binary aperiodic superlattices. We observe formation of assemblies with dodecagonal quasicrystalline order in different binary nanoparticle systems: 13.4-nm Fe2O3 and 5-nm Au nanocrystals, 12.6-nm Fe3O4 and 4.7-nm Au nanocrystals, and 9-nm PbS and 3-nm Pd nanocrystals. Such compositional flexibility indicates that the formation of quasicrystalline nanoparticle assemblies does not require a unique combination of interparticle interactions, but is a general sphere-packing phenomenon governed by the entropy and simple interparticle potentials. We also find that dodecagonal quasicrystalline superlattices can form low-defect interfaces with ordinary crystalline binary superlattices, using fragments of (33.42) Archimedean tiling as the ‘wetting layer’ between the periodic and aperiodic phases.


Advanced Functional Materials | 2002

Organization of Matter on Different Size Scales: Monodisperse Nanocrystals and Their Superstructures

Andrey L. Rogach; Dmitri V. Talapin; Elena V. Shevchenko; Andreas Kornowski; Markus Haase; Horst Weller

Advanced colloidal syntheses enable the preparation of monodisperse semiconductors and magnetic alloy nanocrystals. They can be further used as building blocks for the fabrication of ordered assemblies: two-dimensional and three-dimensional arrays and colloidal supercrystals. This article reviews our recent activities in these fields. A theoretical description of the evolution of an ensemble of nanoparticles in a colloidal solution is applied to the problem of control over the nanocrystal monodispersity.

Collaboration


Dive into the Dmitri V. Talapin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey L. Rogach

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maksym V. Kovalenko

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

John M. Lupton

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jong-Soo Lee

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge