Dmitrii Mironov
Deutscher Wetterdienst
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dmitrii Mironov.
Journal of Climate | 2011
Jose A. Teixeira; S. Cardoso; M. Bonazzola; J. Cole; A. DelGenio; Charlotte A. DeMott; Charmaine N. Franklin; Cecile Hannay; Christian Jakob; Y. Jiao; J. Karlsson; Hiroto Kitagawa; M. Kohler; Akira Kuwano-Yoshida; C. LeDrian; Jui-Lin Li; A. P. Lock; Martin Miller; Pascal Marquet; João Paulo Martins; Carlos R. Mechoso; E. v. Meijgaard; I. Meinke; Pedro M. A. Miranda; Dmitrii Mironov; Roel Neggers; Hua-Lu Pan; David A. Randall; Philip J. Rasch; B. Rockel
AbstractA model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ—the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June–July–August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the co...
Journal of Advances in Modeling Earth Systems | 2012
Zachary M. Subin; William J. Riley; Dmitrii Mironov
An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1 Zachary M. Subin 1,2 , William J. Riley 2 and Dmitrii Mironov 3 Lakes can influence regional climate, yet most general circulation models have, at best, simple and largely untested representations of lakes. We developed the Lake, Ice, Snow, and Sediment Simulator (LISSS) for inclusion in the land-surface component (CLM4) of an earth system model (CESM1). The existing CLM4 lake model performed poorly at all sites tested; for temperate lakes, summer surface water temperature predictions were 10–25uC lower than observations. CLM4-LISSS modifies the existing model by including (1) a treatment of snow; (2) freezing, melting, and ice physics; (3) a sediment thermal submodel; (4) spatially variable prescribed lake depth; (5) improved parameterizations of lake surface properties; (6) increased mixing under ice and in deep lakes; and (7) correction of previous errors. We evaluated the lake model predictions of water temperature and surface fluxes at three small temperate and boreal lakes where extensive observational data was available. We also evaluated the predicted water temperature and/or ice and snow thicknesses for ten other lakes where less comprehensive forcing observations were available. CLM4- LISSS performed very well compared to observations for shallow to medium-depth small lakes. For large, deep lakes, the under-prediction of mixing was improved by increasing the lake eddy diffusivity by a factor of 10, consistent with previous published analyses. Surface temperature and surface flux predictions were improved when the aerodynamic roughness lengths were calculated as a function of friction velocity, rather than using a constant value of 1 mm or greater. We evaluated the sensitivity of surface energy fluxes to modeled lake processes and parameters. Large changes in monthly-averaged surface fluxes (up to 30 W m 22 ) were found when excluding snow insulation or phase change physics and when varying the opacity, depth, albedo of melting lake ice, and mixing strength across ranges commonly found in real lakes. Typical variation among model parameterization choices can therefore cause persistent local surface flux changes much larger than expected changes in greenhouse forcing. We conclude that CLM4-LISSS adequately simulates lake water temperature and surface energy fluxes, with errors comparable in magnitude to those resulting from uncertainty in global lake properties, and is suitable for inclusion in global and regional climate studies. prediction of climate at the regional scale in regions with large lake area [Dutra et al., 2010; Krinner, 2003; Lakes typically have different albedo, greater sub- Lofgren, 1997; Long et al., 2007; Rouse et al., 2005; surface heat conductance and effective heat capacity, Samuelsson et al., 2010], and are important in regional and much lower surface roughness than surrounding energy budgets [Jeffries et al., 1999]. Several modeling land area. These properties are important for accurate studies [Bonan, 1995; Dutra et al., 2010; Krinner, 2003; Samuelsson et al., 2010] have found significant changes Energy and Resources Group, University of California, Berkeley, in regional temperature with prognostic 1-dimensional (1D) lake models integrated in climate models. California, USA Earth Sciences Division, Lawrence Berkeley National Laboratory, The impacts of lakes on regional climate vary with Berkeley, California, USA location and season. In general, unfrozen lakes tend to German Weather Service, Offenbach, Germany suppress diurnal temperature variation as compared to surrounding land [Samuelsson et al., 2010]. Some tem- perate and high-latitude lakes tend to be cooler than 1. Introduction
Tellus A | 2014
Wim Thiery; Victor Stepanenko; Xing Fang; Klaus Jöhnk; Zhongshun Li; Andrey Martynov; Marjorie Perroud; Zachary M. Subin; François Darchambeau; Dmitrii Mironov; Nicole P. M. van Lipzig
The African great lakes are of utmost importance for the local economy (fishing), as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E), East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP). Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the models performance. Simulations are performed over the freshwater layer only (60 m) and over the average lake depth (240 m), since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.
Journal of Advances in Modeling Earth Systems | 2015
Rieke Heinze; Dmitrii Mironov; Siegfried Raasch
A detailed analysis of second-order moment budgets for cloud topped boundary layers (CTBLs) is performed using high-resolution large-eddy simulation (LES). Two CTBLs are simulated—one with trade wind shallow cumuli, and the other with nocturnal marine stratocumuli. Approximations to the ensemble-mean budgets of the Reynolds-stress components, of the fluxes of two quasi-conservative scalars, and of the scalar variances and covariance are computed by averaging the LES data over horizontal planes and over several hundred time steps. Importantly, the subgrid scale contributions to the budget terms are accounted for. Analysis of the LES-based second-moment budgets reveals, among other things, a paramount importance of the pressure scrambling terms in the Reynolds-stress and scalar-flux budgets. The pressure-strain correlation tends to evenly redistribute kinetic energy between the components, leading to the growth of horizontal-velocity variances at the expense of the vertical-velocity variance which is produced by buoyancy over most of both CTBLs. The pressure gradient-scalar covariances are the major sink terms in the budgets of scalar fluxes. The third-order transport proves to be of secondary importance in the scalar-flux budgets. However, it plays a key role in maintaining budgets of TKE and of the scalar variances and covariance. Results from the second-moment budget analysis suggest that the accuracy of description of the CTBL structure within the second-order closure framework strongly depends on the fidelity of parameterizations of the pressure scrambling terms in the flux budgets and of the third-order transport terms in the variance budgets.
Tellus A | 2012
Dmitrii Mironov; Bodo Ritter; Jan-Peter Schulz; Michael Buchhold; Martin Lange; Ekaterina Machulskaya
ABSTRACT A bulk thermodynamic (no rheology) sea-ice parameterisation scheme for use in numerical weather prediction (NWP) is presented. The scheme is based on a self-similar parametric representation (assumed shape) of the evolving temperature profile within the ice and on the integral heat budget of the ice slab. The scheme carries ordinary differential equations (in time) for the ice surface temperature and the ice thickness. The proposed sea-ice scheme is implemented into the NWP models GME (global) and COSMO (limited-area) of the German Weather Service. In the present operational configuration, the horizontal distribution of the sea ice is governed by the data assimilation scheme, no fractional ice cover within the GME/COSMO grid box is considered, and the effect of snow above the ice is accounted for through an empirical temperature dependence of the ice surface albedo with respect to solar radiation. The lake ice is treated similarly to the sea ice, except that freeze-up and break-up of lakes occurs freely, independent of the data assimilation. The sea and lake ice schemes (the latter is a part of the fresh-water lake parameterisation scheme FLake) show a satisfactory performance in GME and COSMO. The ice characteristics are not overly sensitive to the details of the treatment of heat transfer through the ice layer. This justifies the use of a simplified but computationally efficient bulk approach to model the ice thermodynamics in NWP, where the ice surface temperature is a major concern whereas details of the temperature distribution within the ice are of secondary importance. In contrast to the details of the heat transfer through the ice, the cloud cover is of decisive importance for the ice temperature as it controls the radiation energy budget at the ice surface. This is particularly true for winter, when the long-wave radiation dominates the surface energy budget. During summer, the surface energy budget is also sensitive to the grid-box mean ice surface albedo with respect to solar radiation. Considering the crucial importance of the surface radiation budget, future efforts should go into the development of a refined formulation of the grid-box mean surface albedo, including the albedo of ice itself and the fractional ice cover. NWP models may also benefit from an explicit treatment of snow above the ice. As the results from single-column experiments suggest, a bulk snow parameterisation holds promise but improved formulations of the snow density and the snow temperature conductivity are required.
Boundary-Layer Meteorology | 2018
Ekaterina Machulskaya; Dmitrii Mironov
The problem of boundary conditions for the variances and covariances of scalar quantities (e.g., temperature and humidity) at the underlying surface is considered. If the surface is treated as horizontally homogeneous, Monin–Obukhov similarity suggests the Neumann boundary conditions that set the surface fluxes of scalar variances and covariances to zero. Over heterogeneous surfaces, these boundary conditions are not a viable choice since the spatial variability of various surface and soil characteristics, such as the ground fluxes of heat and moisture and the surface radiation balance, is not accounted for. Boundary conditions are developed that are consistent with the tile approach used to compute scalar (and momentum) fluxes over heterogeneous surfaces. To this end, the third-order transport terms (fluxes of variances) are examined analytically using a triple decomposition of fluctuating velocity and scalars into the grid-box mean, the fluctuation of tile-mean quantity about the grid-box mean, and the sub-tile fluctuation. The effect of the proposed boundary conditions on mixing in an archetypical stably-stratified boundary layer is illustrated with a single-column numerical experiment. The proposed boundary conditions should be applied in atmospheric models that utilize turbulence parametrization schemes with transport equations for scalar variances and covariances including the third-order turbulent transport (diffusion) terms.
Quarterly Journal of the Royal Meteorological Society | 2013
Wim C. de Rooy; Peter Bechtold; Kristina Fröhlich; Cathy Hohenegger; Harm J. J. Jonker; Dmitrii Mironov; A. Pier Siebesma; João Teixeira; Jun-Ichi Yano
Boreal Environment Research | 2010
Patrick Samuelsson; Ekaterina Kourzeneva; Dmitrii Mironov
Boreal Environment Research | 2010
Emanuel Dutra; Victor Stepanenko; Gianpaolo Balsamo; Pedro Viterbo; Pedro M. A. Miranda; Dmitrii Mironov; Christoph Schär
Boreal Environment Research | 2010
Victor Stepanenko; Stéphane Goyette; Andrey Martynov; Marjorie Perroud; Xing Fang; Dmitrii Mironov