Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitry A. Cherepanov is active.

Publication


Featured researches published by Dmitry A. Cherepanov.


FEBS Letters | 1999

TRANSIENT ACCUMULATION OF ELASTIC ENERGY IN PROTON TRANSLOCATING ATP SYNTHASE

Dmitry A. Cherepanov; Armen Y. Mulkidjanian; Wolfgang Junge

ATP synthase is conceived as a rotatory engine with two reversible drives, the proton‐transporting membrane portion, F0, and the catalytic peripheral portion, F1. They are mounted on a central shaft (subunit γ) and held together by an eccentric bearing. It is established that the hydrolysis of three molecules of ATP in F1 drives the shaft over a full circle in three steps of 120° each. Proton flow through F0 probably generates a 12‐stepped rotation of the shaft so that four proton‐translocating steps of 30° each drive the synthesis of one molecule of ATP. We addressed the elasticity of the transmission between F0 and F1 in a model where the four smaller steps in F0 load a torsional spring which is only released under liberation of ATP from F1. The kinetic model of an elastic ATP synthase described a wealth of published data on the synthesis/hydrolysis of ATP by F0F1 and on proton conduction by F0 as function of the pH and the protonmotive force. The pK values of the proton‐carrying group interacting with the acidic and basic sides of the membrane were estimated as 5.3–6.4 and 8.0–8.3, respectively.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore

Fedor F. Severin; Inna I. Severina; Yury Nikolaevich Antonenko; Tatiana I. Rokitskaya; Dmitry A. Cherepanov; E. N. Mokhova; Mikhail Yu. Vyssokikh; Antonina V. Pustovidko; Olga V. Markova; L. S. Yaguzhinsky; Galina A. Korshunova; N. Sumbatyan; Maxim V. Skulachev; Vladimir P. Skulachev

A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H+-conducting fatty acid cycling mediated by penetrating cations such as 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C12TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (ΔpH) to a membrane potential (Δψ) of the Nernstian value (about 60 mV Δψ at ΔpH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C12TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H2O2 formation. In intact yeast cells, C12TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization.


Biophysical Journal | 2001

Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme.

Oliver Pänke; Dmitry A. Cherepanov; Karin Gumbiowski; Siegfried Engelbrecht; Wolfgang Junge

ATP synthase (F(O)F(1)) operates as two rotary motor/generators coupled by a common shaft. Both portions, F(1) and F(O), are rotary steppers. Their symmetries are mismatched (C(3) versus C(10-14)). We used the curvature of fluorescent actin filaments, attached to the rotating c-ring, as a spring balance (flexural rigidity of 8. 10(-26) Nm(2)) to gauge the angular profile of the output torque at F(O) during ATP hydrolysis by F(1) (see theoretical companion article (. Biophys. J. 81:1234-1244.)). The large average output torque (50 +/- 6 pN. nm) proved the absence of any slip. Variations of the torque were small, and the output free energy of the loaded enzyme decayed almost linearly over the angular reaction coordinate. Considering the threefold stepping and high activation barrier of the driving motor proper, the rather constant output torque implied a soft elastic power transmission between F(1) and F(O). It is considered as essential, not only for the robust operation of this ubiquitous enzyme under symmetry mismatch, but also for a high turnover rate of the two counteracting and stepping motor/generators.


FEBS Letters | 2001

Inter-subunit rotation and elastic power transmission in F0F1-ATPase.

Wolfgang Junge; Oliver Pänke; Dmitry A. Cherepanov; Karin Gumbiowski; Martin Müller; Siegfried Engelbrecht

ATP synthase (F‐ATPase) produces ATP at the expense of ion‐motive force or vice versa. It is composed from two motor/generators, the ATPase (F1) and the ion translocator (F0), which both are rotary steppers. They are mechanically coupled by 360° rotary motion of subunits against each other. The rotor, subunits γϵc 10–14, moves against the stator, (αβ)3δab 2. The enzyme copes with symmetry mismatch (C3 versus C10–14) between its two motors, and it operates robustly in chimeric constructs or with drastically modified subunits. We scrutinized whether an elastic power transmission accounts for these properties. We used the curvature of fluorescent actin filaments, attached to the rotating c ring, as a spring balance (flexural rigidity of 8·10−26 N m2) to gauge the angular profile of the output torque at F0 during ATP hydrolysis by F1. The large average output torque (56 pN nm) proved the absence of any slip. Angular variations of the torque were small, so that the output free energy of the loaded enzyme decayed almost linearly over the angular reaction coordinate. Considering the three‐fold stepping and high activation barrier (>40 kJ/mol) of the driving motor (F1) itself, the rather constant output torque seen by F0 implied a soft elastic power transmission between F1 and F0. It is considered as essential, not only for the robust operation of this ubiquitous enzyme under symmetry mismatch, but also for a high turnover rate under load of the two counteracting and stepping motors/generators.


Biochimica et Biophysica Acta | 2010

Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs)

Vladimir P. Skulachev; Yury Nikolaevich Antonenko; Dmitry A. Cherepanov; Boris V. Chernyak; Denis S. Izyumov; Ludmila S. Khailova; Sergey S. Klishin; Galina A. Korshunova; Konstantin G. Lyamzaev; Olga Yu. Pletjushkina; Vitaly Roginsky; Tatiana I. Rokitskaya; Fedor F. Severin; Inna I. Severina; Ruben A. Simonyan; Maxim V. Skulachev; Natalia V. Sumbatyan; E. I. Sukhanova; Vadim N. Tashlitsky; T. A. Trendeleva; Mikhail Yu. Vyssokikh; R. A. Zvyagilskaya

The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES, Cyrillic12TPP.


Journal of Biological Chemistry | 2011

Derivatives of Rhodamine 19 as Mild Mitochondria-targeted Cationic Uncouplers

Yuri N. Antonenko; Armine V. Avetisyan; Dmitry A. Cherepanov; Dmitry A. Knorre; Galina A. Korshunova; Olga V. Markova; Silvia M. Ojovan; Irina V. Perevoshchikova; Antonina V. Pustovidko; Tatyana I. Rokitskaya; Inna I. Severina; Ruben A. Simonyan; Ekaterina A. Smirnova; Alexander A. Sobko; Natalia V. Sumbatyan; Fedor F. Severin; Vladimir P. Skulachev

A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C12R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H+ ions was generated in the presence of C12R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C12R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C12R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C12R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease.


Biochimica et Biophysica Acta | 2013

Evolution of cytochrome bc complexes: From membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates☆

Daria V. Dibrova; Dmitry A. Cherepanov; Michael Y. Galperin; Vladimir P. Skulachev; Armen Y. Mulkidjanian

This review traces the evolution of the cytochrome bc complexes from their early spread among prokaryotic lineages and up to the mitochondrial cytochrome bc1 complex (complex III) and its role in apoptosis. The results of phylogenomic analysis suggest that the bacterial cytochrome b6f-type complexes with short cytochromes b were the ancient form that preceded in evolution the cytochrome bc1-type complexes with long cytochromes b. The common ancestor of the b6f-type and the bc1-type complexes probably resembled the b6f-type complexes found in Heliobacteriaceae and in some Planctomycetes. Lateral transfers of cytochrome bc operons could account for the several instances of acquisition of different types of bacterial cytochrome bc complexes by archaea. The gradual oxygenation of the atmosphere could be the key evolutionary factor that has driven further divergence and spread of the cytochrome bc complexes. On the one hand, oxygen could be used as a very efficient terminal electron acceptor. On the other hand, auto-oxidation of the components of the bc complex results in the generation of reactive oxygen species (ROS), which necessitated diverse adaptations of the b6f-type and bc1-type complexes, as well as other, functionally coupled proteins. A detailed scenario of the gradual involvement of the cardiolipin-containing mitochondrial cytochrome bc1 complex into the intrinsic apoptotic pathway is proposed, where the functioning of the complex as an apoptotic trigger is viewed as a way to accelerate the elimination of the cells with irreparably damaged, ROS-producing mitochondria. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface

Andreas Springer; Volker Hagen; Dmitry A. Cherepanov; Yuri N. Antonenko; Peter Pohl

Proton diffusion along membrane surfaces is thought to be essential for many cellular processes such as energy transduction. Commonly, it is treated as a succession of jumps between membrane-anchored proton-binding sites. Our experiments provide evidence for an alternative model. We released membrane-bound caged protons by UV flashes and monitored their arrival at distant sites by fluorescence measurements. The kinetics of the arrival is probed as a function of distance for different membranes and for different water isotopes. We found that proton diffusion along the membrane is fast even in the absence of ionizable groups in the membrane, and it decreases strongly in D2O as compared to H2O. We conclude that the fast proton transport along the membrane is dominated by diffusion via interfacial water, and not via ionizable lipid moieties.


Biophysical Journal | 2004

Proton Transfer Dynamics at the Membrane/Water Interface: Dependence on the Fixed and Mobile pH Buffers, on the Size and Form of Membrane Particles, and on the Interfacial Potential Barrier

Dmitry A. Cherepanov; Wolfgang Junge; Armen Y. Mulkidjanian

Crossing the membrane/water interface is an indispensable step in the transmembrane proton transfer. Elsewhere we have shown that the low dielectric permittivity of the surface water gives rise to a potential barrier for ions, so that the surface pH can deviate from that in the bulk water at steady operation of proton pumps. Here we addressed the retardation in the pulsed proton transfer across the interface as observed when light-triggered membrane proton pumps ejected or captured protons. By solving the system of diffusion equations we analyzed how the proton relaxation depends on the concentration of mobile pH buffers, on the surface buffer capacity, on the form and size of membrane particles, and on the height of the potential barrier. The fit of experimental data on proton relaxation in chromatophore vesicles from phototropic bacteria and in bacteriorhodopsin-containing membranes yielded estimates for the interfacial potential barrier for H(+)/OH(-) ions of approximately 120 meV. We analyzed published data on the acceleration of proton equilibration by anionic pH buffers and found that the height of the interfacial barrier correlated with their electric charge ranging from 90 to 120 meV for the singly charged species to >360 meV for the tetra-charged pyranine.


Biophysical Journal | 2001

Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: curvature as an indicator of the torque.

Dmitry A. Cherepanov; Wolfgang Junge

ATP synthase (F-ATPase) operates as an electrochemical-to-mechanical-to-chemical energy transducer with an astounding 360 degrees rotary motion of subunits epsilongammac(10-14) (rotor) against delta(alphabeta)(3)ab(2) (stator). The enzymes torque as a function of the angular reaction coordinate in relation to ATP-synthesis/hydrolysis, internal elasticity, and external load has remained an important issue. Fluorescent actin filaments of micrometer length have been used to detect the rotation as driven by ATP hydrolysis. We evaluated the viscoelastic dynamics of actin filaments under the influence of enzyme-generated torque, stochastic Langevin force, and viscous drag. Modeling with realistic parameters revealed the dominance of the lowest normal mode. Because of its slow relaxation (approximately 100 ms), power strokes of the enzyme were expected to appear strongly damped in recordings of the angular velocity of the filament. This article describes the theoretical background for the alternative use of the filament as a spring balance. The enzymes angular torque profile under load can be gauged by measuring the average curvature and the stochastic fluctuations of actin filaments. Pertinent experiments were analyzed in the companion paper.

Collaboration


Dive into the Dmitry A. Cherepanov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Junge

University of Osnabrück

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge