Dmitry Chetverikov
Eötvös Loránd University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dmitry Chetverikov.
international conference on pattern recognition | 2002
Dmitry Chetverikov; D. Svirko; Dmitry Stepanov; Pavel Krsek
The problem of geometric alignment of two roughly preregistered, partially overlapping, rigid, noisy 3D point sets is considered. A new natural and simple, robustified extension of the popular Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992) is presented, called the Trimmed ICP (TrICP). The new algorithm is based on the consistent use of the least trimmed squares (LTS) approach in all phases of the operation. Convergence is proved and an efficient implementation is discussed. TrICP is fast, applicable to overlaps under 50%, robust to erroneous measurements and shape defects, and has easy-to-set parameters. ICP is a special case of TrICP when the overlap parameter is 100%. Results of testing the new algorithm are shown.
Image and Vision Computing | 2005
Dmitry Chetverikov; Dmitry Stepanov; Pavel Krsek
Abstract The problem of geometric alignment of two roughly pre-registered, partially overlapping, rigid, noisy 3D point sets is considered. A new natural and simple, robustified extension of the popular Iterative Closest Point (ICP) algorithm [IEEE Trans. Pattern Anal. Machine Intell. 14 (1992) 239] is presented, called Trimmed ICP (TrICP). The new algorithm is based on the consistent use of the Least Trimmed Squares approach in all phases of the operation. Convergence is proved and an efficient implementation is discussed. TrICP is fast, applicable to overlaps under 50%, robust to erroneous and incomplete measurements, and has easy-to-set parameters. ICP is a special case of TrICP when the overlap parameter is 100%. Results of a performance evaluation study on the SQUID database of 1100 shapes are presented. The tests compare TrICP and the Iterative Closest Reciprocal Point algorithm [Fifth International Conference on Computer Vision, 1995].
computer analysis of images and patterns | 2003
Dmitry Chetverikov
A new algorithm is presented for detection of corners and other high curvature points in planar curves. A corner is defined as a location where a triangle with specified opening angle and size can be inscribed in the curve. The tests compare the new algorithm to four alternative algorithms for corner detection.
Pattern Recognition Letters | 2006
Evgeny Lomonosov; Dmitry Chetverikov; Anikó Ekárt
This paper reports on a successful application of genetic optimisation in 3D data registration. We consider the problem of Euclidean alignment of two arbitrarily oriented, partially overlapping surfaces represented by measured point sets contaminated by noise and outliers. Recently, we have proposed the Trimmed Iterative Closest Point algorithm (TrICP) [Chetverikov, D., Stepanov, D., Krsek, P., (2005). Robust Euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm. Image Vision Comput. 23, 299-309] which is fast, applicable to overlaps under 50% and robust to erroneous and incomplete measurements. However, like other iterative methods, TrICP only works with roughly pre-registered surfaces. In this study, we propose a genetic algorithm for pre-alignment of arbitrarily oriented surfaces. Precision and robustness of TrICP are combined with generality of genetic algorithms. This results in a precise and fully automatic 3D data alignment system that needs no manual pre-registration.
international conference on pattern recognition | 1998
Dmitry Chetverikov; Judit Verestóy
A new algorithm is presented for feature point based motion tracking in long image sequences. Dynamic scenes with multiple, independently moving objects are considered in which feature points may temporarily disappear enter and leave the view field. The existing approaches to feature point tracking have limited capabilities in handling incomplete trajectories, especially when the number of points and their speeds are large, and trajectory ambiguities are frequent. The proposed algorithm was designed to efficiently resolve these ambiguities.
International Journal of Computer Vision | 2009
Sándor Fazekas; Tomer Amiaz; Dmitry Chetverikov; Nahum Kiryati
Motion estimation is usually based on the brightness constancy assumption. This assumption holds well for rigid objects with a Lambertian surface, but it is less appropriate for fluid and gaseous materials. For these materials an alternative assumption is required. This work examines three possible alternatives: gradient constancy, color constancy and brightness conservation (under this assumption the brightness of an object can diffuse to its neighborhood). Brightness conservation and color constancy are found to be adequate models. We propose a method for detecting regions of dynamic texture in image sequences. Accurate segmentation into regions of static and dynamic texture is achieved using a level set scheme. The level set function separates each image into regions that obey brightness constancy and regions that obey the alternative assumption. We show that the method can be simplified to obtain a less robust but fast algorithm, capable of real-time performance. Experimental results demonstrate accurate segmentation by the full level set scheme, as well as by the simplified method. The experiments included challenging image sequences, in which color or geometry cues by themselves would be insufficient.
international conference on pattern recognition | 1996
Dmitry Chetverikov; Jisheng Liang; Jozsef Komuves; Robert M. Haralick
We consider the problem of zone classification in document image processing. Document blocks are labelled as text or nontext using texture features derived from a feature based interaction map (FBIM), a recently introduced general tool for texture analysis. The zone classification procedure proposed is tested on the comprehensive document image database UW-I created at the University of Washington in Seattle. Different classification procedures are considered. The performance ranges from 96% to 98% using 6 FBIM texture features only.
international conference on scale space and variational methods in computer vision | 2007
Tomer Amiaz; Sándor Fazekas; Dmitry Chetverikov; Nahum Kiryati
Motion estimation is usually based on the brightness constancy assumption. This assumption holds well for rigid objects with a Lambertian surface, but it is less appropriate for fluid and gaseous materials. For these materials a variant of this assumption, which we call the brightness conservation assumption should be employed. Under this assumption an objects brightness can diffuse to its neighborhood. We propose a method for detecting regions of dynamic texture in image sequences. Segmentation into regions of static and dynamic texture is achieved by using a level set scheme. The level set function separates the images into areas obeying brightness constancy and those which obey brightness conservation. Experimental results on challenging image sequences demonstrate the success of the segmentation scheme and validate the model.
Signal Processing-image Communication | 2007
Sándor Fazekas; Dmitry Chetverikov
We address the problem of dynamic texture (DT) classification using optical flow features. Optical flow based approaches dominate among the currently available DT classification methods. The features used by these approaches often describe local image distortions in terms of such quantities as curl or divergence. Both normal and complete flows have been considered, with normal flow (NF) being used more frequently. However, precise meaning and applicability of normal and complete flow features have never been analysed properly. We provide a principled analysis of local image distortions and their relation to optical flow. Then we present the results of a comprehensive DT classification study that compares the performances of different flow features for a NF algorithm and four different complete flow algorithms. The efficiencies of two flow confidence measures are also studied.
computer analysis of images and patterns | 1999
Dmitry Chetverikov; Yuri Khenokh
The problem of defect detection in 2D and 3D shapes is analyzed. A shape is represented by a set of its contour, or surface, points. Mathematically, the problem is formulated as a specific matching of two sets of points, a reference one and a measured one. Modified Hausdorff distance between these two point sets is used to induce the matching. Based on a distance transform, a 2D algorithm is proposed that implements the matching in a computationally efficient way. The method is applied to visual inspection and dimensional measurement of ferrite cores. Alternative approaches to the problem are also discussed.1