Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitry I. Nurminsky is active.

Publication


Featured researches published by Dmitry I. Nurminsky.


Nature | 2002

Large clusters of co-expressed genes in the Drosophila genome

Alexander M. Boutanaev; Alla Kalmykova; Yuri Y. Shevelyov; Dmitry I. Nurminsky

Clustering of co-expressed, non-homologous genes on chromosomes implies their co-regulation. In lower eukaryotes, co-expressed genes are often found in pairs. Clustering of genes that share aspects of transcriptional regulation has also been reported in higher eukaryotes. To advance our understanding of the mode of coordinated gene regulation in multicellular organisms, we performed a genome-wide analysis of the chromosomal distribution of co-expressed genes in Drosophila. We identified a total of 1,661 testes-specific genes, one-third of which are clustered on chromosomes. The number of clusters of three or more genes is much higher than expected by chance. We observed a similar trend for genes upregulated in the embryo and in the adult head, although the expression pattern of individual genes cannot be predicted on the basis of chromosomal position alone. Our data suggest that the prevalent mechanism of transcriptional co-regulation in higher eukaryotes operates with extensive chromatin domains that comprise multiple genes.


Nature | 1998

Selective sweep of a newly evolved sperm-specific gene in Drosophila

Dmitry I. Nurminsky; Maria Nurminskaya; Daniel De Aguiar; Daniel L. Hartl

The pattern of genetic variation across the genome of Drosophila melanogaster is consistent with the occurrence of frequent ‘selective sweeps’, in which new favourable mutations become incorporated into the species so quickly that linked alleles can ‘hitchhike’ and also become fixed. Because of the hitchhiking of linked genes, it is generally difficult to identify the target of any putative selective sweep. Here, however, we identify a new gene in D. melanogaster that codes for a sperm-specific axonemal dynein subunit. The gene has a new testes-specific promoter derived from a protein-coding region in a gene encoding the cell-adhesion protein annexin X (AnnX), and it contains a new protein-coding exon derived from an intron in a gene encoding a cytoplasmic dynein intermediate chain (Cdic). The new transcription unit, designated Sdic (for sperm-specific dynein intermediate chain), has been duplicated about tenfold in a tandem array. Consistent with the selective sweep of this gene, the level of genetic polymorphism near Sdic is unusually low. The discovery of this gene supports other results that point to the rapid molecular evolution of male reproductive functions.


Trends in Genetics | 1997

What restricts the activity of mariner-like transposable elements?

Daniel L. Hartl; Elena R. Lozovskaya; Dmitry I. Nurminsky; Allan R. Lohe

A number of mechanisms have recently been described that might be important in restricting the level of activity of mariner-like transposable elements (MLEs) in natural populations. These mechanisms include overproduction inhibition, in which increasing the dose of transposase decreases net activity. Another mechanism is mediated by certain missense mutations, in which a mutant transposase protein impairs the activity of the wild-type transposase in heterozygous mutant/nonmutant genotypes. A further mechanism is the potential for transposase titration by defective elements that retain transposase binding activity. The issue of regulation is not only of theoretical importance in understanding the molecular and evolutionary genetics of MLEs, but also of practical significance in learning how best to use MLEs in the germline transformation of insect pests and disease vectors.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The B-type lamin is required for somatic repression of testis-specific gene clusters

Y. Y. Shevelyov; S. A. Lavrov; L. M. Mikhaylova; I. D. Nurminsky; R. J. Kulathinal; K. S. Egorova; Y. M. Rozovsky; Dmitry I. Nurminsky

Large clusters of coexpressed tissue-specific genes are abundant on chromosomes of diverse species. The genes coordinately misexpressed in diverse diseases are also found in similar clusters, suggesting that evolutionarily conserved mechanisms regulate expression of large multigenic regions both in normal development and in its pathological disruptions. Studies on individual loci suggest that silent clusters of coregulated genes are embedded in repressed chromatin domains, often localized to the nuclear periphery. To test this model at the genome-wide scale, we studied transcriptional regulation of large testis-specific gene clusters in somatic tissues of Drosophila. These gene clusters showed a drastic paucity of known expressed transgene insertions, indicating that they indeed are embedded in repressed chromatin. Bioinformatics analysis suggested the major role for the B-type lamin, LamDmo, in repression of large testis-specific gene clusters, showing that in somatic cells as many as three-quarters of these clusters interact with LamDmo. Ablation of LamDmo by using mutants and RNAi led to detachment of testis-specific clusters from nuclear envelope and to their selective transcriptional up-regulation in somatic cells, thus providing the first direct evidence for involvement of the B-type lamin in tissue-specific gene repression. Finally, we found that transcriptional activation of the lamina-bound testis-specific gene cluster in male germ line is coupled with its translocation away from the nuclear envelope. Our studies, which directly link nuclear architecture with coordinated regulation of tissue-specific genes, advance understanding of the mechanisms underlying both normal cell differentiation and developmental disorders caused by lesions in the B-type lamins and interacting proteins.


Molecular and Cellular Biology | 1998

Cytoplasmic Dynein Intermediate-Chain Isoforms with Different Targeting Properties Created by Tissue-Specific Alternative Splicing

Dmitry I. Nurminsky; Maria Nurminskaya; Elizaveta V. Benevolenskaya; Yury Y. Shevelyov; Daniel L. Hartl; Vladimir A. Gvozdev

ABSTRACT The intermediate chains (ICs) are the subunits of the cytoplasmic dynein that provide binding of the complex to cargo organelles through interaction of their N termini with dynactin. We present evidence that in Drosophila, the IC subunits are represented by at least 10 structural isoforms, created by the alternative splicing of transcripts from a unique Cdic gene. The splicing pattern is tissue specific. A constitutive set of four IC isoforms is expressed in all tissues tested; in addition, tissue-specific isoforms are found in the ovaries and nervous tissue. The structural variations between isoforms are limited to the N terminus of the IC molecule, where the interaction with dynactin takes place. This suggests differences in the dynactin-mediated organelle binding by IC isoforms. Accordingly, when transiently expressed inDrosophila Schneider-3 cells, the IC isoforms differ in their intracellular targeting properties from each other. A mechanism is proposed for the regulation of dynein binding to organelles through the changes in the content of the IC isoform pool.


BMC Biology | 2011

Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome

Lyudmila M. Mikhaylova; Dmitry I. Nurminsky

BackgroundPaucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI) has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven.ResultsMicroarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencing-associated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes.ConclusionsOur data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissue-biased genes to the autosomes.


Genetica | 2003

Origin and evolution of a new gene expressed in the Drosophila sperm axoneme

José M. Ranz; Ana Rita Ponce; Daniel L. Hartl; Dmitry I. Nurminsky

Sdic is a new gene that evolved recently in the lineage of Drosophila melanogaster. It was formed from a duplication and fusion of the gene AnnX, which encodes annexin X, and Cdic, which encodes the intermediate polypeptide chain of the cytoplasmic dynein. The fusion joins AnnX exon 4 with Cdic intron 3, which brings together three putative promoter elements for testes- specific expression of Sdic: the distal conserved element (DCE) and testes-specific element (TSE) are derived from AnnX, and the proximal conserved element (PCE) from Cdic intron 3. Sdic transcription initiates within the PCE, and translation is initiated within the sequence derived from Cdic intron 3, continuing through a 10 base pair insertion that creates a new splice donor site that enables the new coding sequence derived from intron 3 to be joined with the coding sequence of Cdic exon 4. A novel protein is created lacking 100 residues at the amino end that contain sequence motifs essential for the function of cytoplasmic dynein intermediate chains. Instead, the amino end is a hydrophobic region of 16 residues that resembles the amino end of axonemal dynein intermediate chains from other organisms. The downstream portion of Sdic features large deletions eliminating Cdic exons v2 and v3, as well as multiple frameshift deletions or insertions. The new protein becomes incorporated into the tail of the mature sperm and may function as an axonemal dynein intermediate chain. The new Sdic gene is present in about 10 tandem repeats between the wildtype Cdic and AnnX genes located near the base of the X chromosome. The implications of these findings are discussed relative to the origin of new gene functions and the process of speciation.


Genetics | 2008

Analysis of the Drosophila melanogaster Testes Transcriptome Reveals Coordinate Regulation of Paralogous Genes

Lyudmila M. Mikhaylova; Kimberly Nguyen; Dmitry I. Nurminsky

Gene duplications have been broadly implicated in the generation of testis-specific genes. To perform a comprehensive analysis of paralogous testis-biased genes, we characterized the testes transcriptome of Drosophila melanogaster by comparing gene expression in testes vs. ovaries, heads, and gonadectomized males. A number of the identified 399 testis-biased genes code for the known components of mature sperm. Among the detected 69 genes downregulated in testes, a large fraction is required for viability. By analyzing paralogs of testis-biased genes, we identified “co-regulated” paralogous pairs in which both genes are testis biased, “anti-regulated” pairs in which one paralog is testis biased and the other downregulated in testes, and “neutral” pairs in which one paralog is testis biased and the other constitutively expressed. The numbers of identified co-regulated and anti-regulated pairs were higher than expected by chance. Testis-biased genes included in these pairs show decreased frequency of lethal mutations, suggesting their specific role in male reproduction. These genes also show exceptionally high interspecific variability of expression in comparison between D. melanogaster and the closely related D. simulans. Further, interspecific changes in testis bias of expression are generally correlated within the co-regulated pairs and are anti-correlated within the anti-regulated pairs, suggesting coordinated regulation within both types of paralogous gene pairs.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Transglutaminase Inhibitors Attenuate Vascular Calcification in a Preclinical Model

Kelly E. Beazley; Derek Banyard; Florence Lima; Stephanie Deasey; Dmitry I. Nurminsky; Mikhail Konoplyannikov; Maria Nurminskaya

Objective—In vitro, transglutaminase-2 (TG2)–mediated activation of the &bgr;-catenin signaling pathway is central in warfarin-induced calcification, warranting inquiry into the importance of this signaling axis as a target for preventive therapy of vascular calcification in vivo. Methods and Results—The adverse effects of warfarin-induced elastocalcinosis in a rat model include calcification of the aortic media, loss of the cellular component in the vessel wall, and isolated systolic hypertension, associated with accumulation and activation of TG2 and activation of &bgr;-catenin signaling. These effects of warfarin can be completely reversed by intraperitoneal administration of the TG2-specific inhibitor KCC-009 or dietary supplementation with the bioflavonoid quercetin, known to inhibit &bgr;-catenin signaling. Our study also uncovers a previously uncharacterized ability of quercetin to inhibit TG2. Quercetin reversed the warfarin-induced increase in systolic pressure, underlying the functional consequence of this treatment. Molecular analysis shows that quercetin diet stabilizes the phenotype of smooth muscle and prevents its transformation into osteoblastic cells. Conclusion—Inhibition of the TG2/&bgr;-catenin signaling axis seems to prevent warfarin-induced elastocalcinosis and to control isolated systolic hypertension.


Molecular and Cellular Biology | 2005

The Pattern of Chromosome Folding in Interphase Is Outlined by the Linear Gene Density Profile

Alexander M. Boutanaev; Lyudmila M. Mikhaylova; Dmitry I. Nurminsky

ABSTRACT Spatial organization of chromatin in the interphase nucleus plays a role in gene expression and inheritance. Although it appears not to be random, the principles of this organization are largely unknown. In this work, we show an explicit relationship between the intranuclear localization of various chromosome segments and the pattern of gene distribution along the genome sequence. Using a 7-megabase-long region of the Drosophila melanogaster chromosome 2 as a model, we observed that the six gene-poor chromosome segments identified in the region interact with components of the nuclear matrix to form a compact stable cluster. The six gene-rich segments form a spatially segregated unstable cluster dependent on nonmatrix nuclear proteins. The resulting composite structure formed by clusters of gene-rich and gene-poor regions is reproducible between the nuclei. We suggest that certain aspects of chromosome folding in interphase are predetermined and can be inferred through in silico analysis of chromosome sequence, using gene density profile as a manifestation of “folding code.”

Collaboration


Dive into the Dmitry I. Nurminsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuri Y. Shevelyov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alla Kalmykova

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge