Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitry Korkin is active.

Publication


Featured researches published by Dmitry Korkin.


Annual Review of Biochemistry | 2008

Integrating diverse data for structure determination of macromolecular assemblies.

Frank Alber; Friedrich Förster; Dmitry Korkin; Maya Topf; Andrej Sali

To understand the cell, we need to determine the macromolecular assembly structures, which may consist of tens to hundreds of components. First, we review the varied experimental data that characterize the assemblies at several levels of resolution. We then describe computational methods for generating the structures using these data. To maximize completeness, resolution, accuracy, precision, and efficiency of the structure determination, a computational approach is required that uses spatial information from a variety of experimental methods. We propose such an approach, defined by its three main components: a hierarchical representation of the assembly, a scoring function consisting of spatial restraints derived from experimental data, and an optimization method that generates structures consistent with the data. This approach is illustrated by determining the configuration of the 456 proteins in the nuclear pore complex (NPC) from bakers yeast. With these tools, we are poised to integrate structural information gathered at multiple levels of the biological hierarchy--from atoms to cells--into a common framework.


Nature | 2016

A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens

Shiming Liu; Pramod Kaitheri Kandoth; Samantha Warren; Greg Yeckel; Robert Heinz; John Alden; Chunling Yang; Aziz Jamai; Tarik El-Mellouki; Parijat S. Juvale; John H. Hill; Thomas J. Baum; Silvia R. Cianzio; Steven A. Whitham; Dmitry Korkin; Melissa G. Mitchum; Khalid Meksem

Soybean (Glycine max (L.) Merr.) is an important crop that provides a sustainable source of protein and oil worldwide. Soybean cyst nematode (Heterodera glycines Ichinohe) is a microscopic roundworm that feeds on the roots of soybean and is a major constraint to soybean production. This nematode causes more than US


New Phytologist | 2010

Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins

Jianying Wang; Christopher B. Lee; Amy Replogle; Sneha Joshi; Dmitry Korkin; Richard S. Hussey; Thomas J. Baum; Eric L. Davis; Xiaohong Wang; Melissa G. Mitchum

1 billion in yield losses annually in the United States alone, making it the most economically important pathogen on soybean. Although planting of resistant cultivars forms the core management strategy for this pathogen, nothing is known about the nature of resistance. Moreover, the increase in virulent populations of this parasite on most known resistance sources necessitates the development of novel approaches for control. Here we report the map-based cloning of a gene at the Rhg4 (for resistance to Heterodera glycines 4) locus, a major quantitative trait locus contributing to resistance to this pathogen. Mutation analysis, gene silencing and transgenic complementation confirm that the gene confers resistance. The gene encodes a serine hydroxymethyltransferase, an enzyme that is ubiquitous in nature and structurally conserved across kingdoms. The enzyme is responsible for interconversion of serine and glycine and is essential for cellular one-carbon metabolism. Alleles of Rhg4 conferring resistance or susceptibility differ by two genetic polymorphisms that alter a key regulatory property of the enzyme. Our discovery reveals an unprecedented plant resistance mechanism against a pathogen. The mechanistic knowledge of the resistance gene can be readily exploited to improve nematode resistance of soybean, an increasingly important global crop.


Proteins | 2013

Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions

Rocco Moretti; Sarel J. Fleishman; Rudi Agius; Mieczyslaw Torchala; Paul A. Bates; Panagiotis L. Kastritis; João Garcia Lopes Maia Rodrigues; Mikael Trellet; Alexandre M. J. J. Bonvin; Meng Cui; Marianne Rooman; Dimitri Gillis; Yves Dehouck; Iain H. Moal; Miguel Romero-Durana; Laura Pérez-Cano; Chiara Pallara; Brian Jimenez; Juan Fernández-Recio; Samuel Coulbourn Flores; Michael S. Pacella; Krishna Praneeth Kilambi; Jeffrey J. Gray; Petr Popov; Sergei Grudinin; Juan Esquivel-Rodriguez; Daisuke Kihara; Nan Zhao; Dmitry Korkin; Xiaolei Zhu

*Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3/ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. *The site of action and mechanism of delivery of CLE effectors to host plant cells by the nematode, however, have not been established. In this study, immunologic, genetic and biochemical approaches were used to reveal the localization and site of action of H. glycines-secreted CLE proteins in planta. *We present evidence indicating that the nematode CLE propeptides are delivered to the cytoplasm of syncytial cells, but ultimately function in the apoplast, consistent with their proposed role as ligand mimics of plant CLE peptides. We determined that the nematode 12-amino-acid CLE motif peptide is not sufficient for biological activity in vivo, pointing to an important role for sequences upstream of the CLE motif in function. *Genetic and biochemical analysis confirmed the requirement of the variable domain in planta for host-specific recognition and revealed a novel role in trafficking cytoplasmically delivered CLEs to the apoplast in order to function as ligand mimics.


Nature Communications | 2014

Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism.

Roser Corominas; Xinping Yang; Guan Ning Lin; Shuli Kang; Yun Shen; Lila Ghamsari; Martin P. Broly; Maria J. Rodriguez; Stanley Tam; Shelly A. Trigg; Changyu Fan; Song Yi; Murat Tasan; Irma Lemmens; Xingyan Kuang; Nan Zhao; Dheeraj Malhotra; Jacob J. Michaelson; Vladimir Vacic; Michael A. Calderwood; Frederick P. Roth; Jan Tavernier; Steve Horvath; Kourosh Salehi-Ashtiani; Dmitry Korkin; Jonathan Sebat; David E. Hill; Tong Hao; Marc Vidal; Lilia M. Iakoucheva

Community‐wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community‐wide assessment of methods to predict the effects of mutations on protein–protein interactions. Twenty‐two groups predicted the effects of comprehensive saturation mutagenesis for two designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data obtained using deep sequencing. The most successful methods explicitly considered the effects of mutation on monomer stability in addition to binding affinity, carried out explicit side‐chain sampling and backbone relaxation, evaluated packing, electrostatic, and solvation effects, and correctly identified around a third of the beneficial mutations. Much room for improvement remains for even the best techniques, and large‐scale fitness landscapes should continue to provide an excellent test bed for continued evaluation of both existing and new prediction methodologies. Proteins 2013; 81:1980–1987.


PLOS Computational Biology | 2014

Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning.

Nan Zhao; Jing Ginger Han; Chi-Ren Shyu; Dmitry Korkin

Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.


PLOS Computational Biology | 2005

Structural modeling of protein interactions by analogy: application to PSD-95.

Dmitry Korkin; Fred P. Davis; Frank Alber; Tinh N. Luong; Min-yi Shen; Vladan Lucic; Mary B. Kennedy; Andrej Sali

Single nucleotide polymorphisms (SNPs) are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs) have been found near or inside the protein-protein interaction (PPI) interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging task to address, both experimentally and computationally. Here, we present this task as three related classification problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect predictor). Our method predicts the effects of nsSNPs on PPIs, given the interactions structure. It leverages supervised and semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding affinities of the mutant and wild-type interactions. Three classification problems were considered: (1) a 2-class problem (strengthening/weakening PPI mutations), (2) another 2-class problem (mutations that disrupt/preserve a PPI), and (3) a 3-class classification (detrimental/neutral/beneficial mutation effects). In total, 11 different supervised and semi-supervised classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87 for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the 3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of SNP-IN tool makes it readily available to study the rewiring of large-scale protein-protein interaction networks, and can be useful for functional annotation of disease-associated SNPs. SNIP-IN tool is freely accessible as a web-server at http://korkinlab.org/snpintool/.


Genes & Development | 2008

Tel2 mediates activation and localization of ATM/Tel1 kinase to a double-strand break

Carol M. Anderson; Dmitry Korkin; Dana L. Smith; Svetlana Makovets; Jeffrey J. Seidel; Andrej Sali; Elizabeth H. Blackburn

We describe comparative patch analysis for modeling the structures of multidomain proteins and protein complexes, and apply it to the PSD-95 protein. Comparative patch analysis is a hybrid of comparative modeling based on a template complex and protein docking, with a greater applicability than comparative modeling and a higher accuracy than docking. It relies on structurally defined interactions of each of the complex components, or their homologs, with any other protein, irrespective of its fold. For each component, its known binding modes with other proteins of any fold are collected and expanded by the known binding modes of its homologs. These modes are then used to restrain conventional molecular docking, resulting in a set of binary domain complexes that are subsequently ranked by geometric complementarity and a statistical potential. The method is evaluated by predicting 20 binary complexes of known structure. It is able to correctly identify the binding mode in 70% of the benchmark complexes compared with 30% for protein docking. We applied comparative patch analysis to model the complex of the third PSD-95, DLG, and ZO-1 (PDZ) domain and the SH3-GK domains in the PSD-95 protein, whose structure is unknown. In the first predicted configuration of the domains, PDZ interacts with SH3, leaving both the GMP-binding site of guanylate kinase (GK) and the C-terminus binding cleft of PDZ accessible, while in the second configuration PDZ interacts with GK, burying both binding sites. We suggest that the two alternate configurations correspond to the different functional forms of PSD-95 and provide a possible structural description for the experimentally observed cooperative folding transitions in PSD-95 and its homologs. More generally, we expect that comparative patch analysis will provide useful spatial restraints for the structural characterization of an increasing number of binary and higher-order protein complexes.


Protein Science | 2005

Localization of protein‐binding sites within families of proteins

Dmitry Korkin; Fred P. Davis; Andrej Sali

The kinases ATM and ATR (Tel1 and Mec1 in the yeast Saccharomyces cerevisiae) control the response to DNA damage. We report that S. cerevisiae Tel2 acts at an early step of the TEL1/ATM pathway of DNA damage signaling. We show that Tel1 and Tel2 interact, and that even when Tel1 protein levels are high, this interaction is specifically required for Tel1 localization to a DNA break and its activation of downstream targets. Computational analysis revealed structural homology between Tel2 and Ddc2 (ATRIP in vertebrates), a partner of Mec1, suggesting a common structural principle used by partners of phoshoinositide 3-kinase-like kinases.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Long identical multispecies elements in plant and animal genomes

Jeff Reneker; Eric Lyons; Gavin C. Conant; J. Chris Pires; Michael Freeling; Chi-Ren Shyu; Dmitry Korkin

We address the question of whether or not the positions of protein‐binding sites on homologous protein structures are conserved irrespective of the identities of their binding partners. First, for each domain family in the Structural Classification of Proteins (SCOP), protein‐binding sites are extracted from our comprehensive database of structurally defined binary domain interactions (PIBASE). Second, the binding sites within each family are superposed using a structural alignment of its members. Finally, the degree of localization of binding sites within each family is quantified by comparing it with localization expected by chance. We found that 72% of the 1847 SCOP domain families in PIBASE have binding sites with localization values greater than expected by chance. Moreover, 554 (30%) of these families have localizations that are statistically significant (i.e., more than four standard deviations away from the mean expected by chance). In contrast, only 144 (8%) families have significantly low localization. The absence of a significant correlation of the binding site localization with the average sequence and structural conservations in a family suggests that localization can be helpful for describing the functional diversity of protein–protein interactions, complementing measures of sequence and structural conservation. Consideration of the binding site localization may also result in spatial restraints for the modeling of protein assembly structures.

Collaboration


Dive into the Dmitry Korkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nan Zhao

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

Bin Pang

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

Andi Dhroso

Worcester Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan T. Johnson

Worcester Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Lev Goldfarb

University of New Brunswick

View shared research outputs
Top Co-Authors

Avatar

Andrej Sali

University of California

View shared research outputs
Top Co-Authors

Avatar

Hongzhu Cui

Worcester Polytechnic Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge