Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitry Litvinov is active.

Publication


Featured researches published by Dmitry Litvinov.


North American Journal of Medical Sciences | 2012

Antioxidant and anti-inflammatory role of paraoxonase 1: Implication in arteriosclerosis diseases

Dmitry Litvinov; Halleh Mahini; Mahdi Garelnabi

Paraoxonase 1 (PON1) is a hydrolytic enzyme with wide range of substrates, and capability to protect against lipid oxidation. Despite of the large number of compounds that can be hydrolyzed by paraoxonase, the biologically relevant substrates are still not clearly determined. There is a massive in vitro and in vivo data to demonstrate the beneficial effects of PON1 in several atherosclerosis-related processes. The enzyme is primarily expressed in liver; however, it is also localized in other tissues. PON1 attracted significant interest as a protein that is responsible for the most of antioxidant properties of high-density lipoprotein (HDL). Several bioactive molecules such as dietary polyphenols, aspirin and its hydrolysis product salicylate, are known to stimulate PON1 transcription activation in mouse liver and HepG2 cell line. Studies on the activity, function, and genetic makeup have revealed a protective role of PON1. Some striking data were obtained in PON1 gene knockout and PON1 transgenic mouse models and in human studies. The goal of this review is to assess the current understanding of PON1 expression, enzymatic and antioxidant activity, and its atheroprotective effects. Results from in vivo and in vitro basic studies; and from human studies on the association of PON1 with coronary artery disease (CAD) and ischemic stroke will be discussed.


Biochimica et Biophysica Acta | 2008

Lipid peroxidation and decomposition-Conflicting roles in plaque vulnerability and stability

Sampath Parthasarathy; Dmitry Litvinov; Krithika Selvarajan; Mahdi Garelnabi

The low density lipoprotein (LDL) oxidation hypothesis has generated considerable interest in oxidative stress and how it might affect atherosclerosis. However, the failure of antioxidants, particularly vitamin E, to affect the progression of the disease in humans has convinced even staunch supporters of the hypothesis to take a step backwards and reconsider alternatives. Preponderant evidence for the hypothesis came from animal antioxidant intervention studies. In this review we point out basic differences between animal and human atherosclerosis development and suggest that human disease starts where animal studies end. While initial oxidative steps in the generation of early fatty streak lesions might be common, the differences might be in the steps involved in the decomposition of peroxidized lipids into aldehydes and their further oxidation into carboxylic acids. We suggest that these steps may not be amenable to attenuation by antioxidants and antioxidants might actually counter the stabilization of plaque by preventing the formation of carboxylic acids which are anti-inflammatory in nature. The formation of such dicarboxylic acids may also be conducive to plaque stabilization by trapping calcium. We suggest that agents that would prevent the decomposition of lipid peroxides and promote the formation and removal of lipid hydroxides, such as paraoxonase (PON 1) or apo A1/high density lipoprotein (HDL) might be more conducive to plaque regression.


Journal of Medicinal Food | 2015

Anti-atherosclerotic and anti-inflammatory actions of sesame oil.

Chandrakala Aluganti Narasimhulu; Krithika Selvarajan; Dmitry Litvinov; Sampath Parthasarathy

Atherosclerosis, a major form of cardiovascular disease, has now been recognized as a chronic inflammatory disease. Nonpharmacological means of treating chronic diseases have gained attention recently. We previously reported that sesame oil has anti-atherosclerotic properties. In this study, we have determined the mechanisms by which sesame oil might modulate atherosclerosis by identifying genes and inflammatory markers. Low-density lipoprotein receptor knockout (LDLR(-/-)) female mice were fed with either an atherogenic diet or an atherogenic diet reformulated with sesame oil (sesame oil diet). Plasma lipids and atherosclerotic lesions were quantified after 3 months of feeding. Plasma samples were used for cytokine analysis. RNA was extracted from the liver tissue and used for global gene arrays. The sesame oil diet significantly reduced atherosclerotic lesions, plasma cholesterol, triglyceride, and LDL cholesterol levels in LDLR(-/-) mice. Plasma inflammatory cytokines, such as MCP-1, RANTES, IL-1α, IL-6, and CXCL-16, were significantly reduced, demonstrating an anti-inflammatory property of sesame oil. Gene array analysis showed that sesame oil induced many genes, including ABCA1, ABCA2, APOE, LCAT, and CYP7A1, which are involved in cholesterol metabolism and reverse cholesterol transport. In conclusion, our studies suggest that a sesame oil-enriched diet could be an effective nonpharmacological treatment for atherosclerosis by controlling inflammation and regulating lipid metabolism.


Atherosclerosis | 2010

Anti-atherosclerotic actions of azelaic acid, an end product of linoleic acid peroxidation, in mice

Dmitry Litvinov; Krithika Selvarajan; Mahdi Garelnabi; Larissa Brophy; Sampath Parthasarathy

BACKGROUND Atherosclerosis is a chronic inflammatory disease associated with the accumulation of oxidized lipids in arterial lesions. Recently we studied the degradation of peroxidized linoleic acid and suggested that oxidation is an essential process that results in the generation of terminal products, namely mono- and dicarboxylic acids that may lack the pro-atherogenic effects of peroxidized lipids. In continuation of that study, we tested the effects of azelaic acid (AzA), one of the end products of linoleic acid peroxidation, on the development of atherosclerosis using low density lipoprotein receptor knockout (LDLr(-/-)) mice. METHODS AND RESULTS LDLr(-/-) mice were fed with a high fat and high cholesterol Western diet (WD group). Another group of animals were fed the same diet with AzA supplementation (WD+AzA group). After 4 months of feeding, mice were sacrificed and atherosclerotic lesions were measured. The results showed that the average lesion area in WD+AzA group was 38% (p<0.001) less as compared to WD group. The athero-protective effect of AzA was not related to changes in plasma lipid content. AzA supplementation decreased the level of CD68 macrophage marker by 34% (p<0.05). CONCLUSIONS The finding that AzA exhibits an anti-atherogenic effect suggests that oxidation of lipid peroxidation-derived aldehydes into carboxylic acids could be an important step in the bodys defense against oxidative damage.


Atherosclerosis | 2008

Dietary oxidized linoleic acid lowers triglycerides via APOA5/APOClll dependent mechanisms.

Mahdi Garelnabi; Krithika Selvarajan; Dmitry Litvinov; Nalini Santanam; Sampath Parthasarathy

Previously we have shown that intestinal cells efficiently take up oxidized fatty acids (OxFAs) and that atherosclerosis is increased when animals are fed a high cholesterol diet in the presence of oxidized linoleic acid. Interestingly, we found that in the absence of dietary cholesterol, the oxidized fatty acid fed low-density lipoprotein (LDL) receptor negative mice appeared to have lower plasma triglyceride (TG) levels as compared to animals fed oleic acid. In the present study, we fed C57BL6 mice a normal mice diet supplemented with oleic acid or oxidized linoleic acid (at 18 mg/animal/day) for 2 weeks. After the mice were sacrificed, we measured the plasma lipids and collected livers for the isolation of RNA. The results showed that while there were no significant changes in the levels of total cholesterol and high-density lipoprotein cholesterol (HDLc), there was a significant decrease (41.14%) in the levels of plasma TG in the mice that were fed oxidized fatty acids. The decreases in plasma TG levels were accompanied by significant increases (P<0.001) in the expressions of APOA5 and acetyl-CoA oxidase genes as well as a significant (P<0.04) decrease in APOClll gene expression. Oxidized lipids have been suggested to be ligands for peroxisome proliferator-activated receptor (PPAR*). However, there were no increases in the mRNA or protein levels of PPAR* in the oxidized linoleic acid fed animals. These results suggest that oxidized fatty acids may act through an APOA5/APOClll mechanism that contributes to lowering of TG levels other than PPAR* induction.


Atherosclerosis | 2011

Peritoneal macrophages are distinct from monocytes and adherent macrophages

Krithika Selvarajan; Leni Moldovan; Aluganti N. Chandrakala; Dmitry Litvinov; Sampath Parthasarathy

OBJECTIVE Peritoneal macrophages are used in many studies related to atherosclerosis. In situ, they are non-adherent and upon culturing, they adhere and function as scavengers of modified lipoproteins and dead apoptotic cells. They also produce growth factors, suggesting that they may provide life-supporting function as well. In this study, we propose that macrophage adherence plays a major role in their function and propose a novel concept that non-adherent macrophages are poor scavengers and may delay the process of apoptosis by secretion of growth factors. METHODS AND RESULTS We analyzed non-adherent and adherent macrophages for changes in receptor expression, growth factor production and function by microarrays, real-time PCR, and western blot analyses. Our results indicate that adherent macrophages have increased expression of scavenger receptors as compared to fresh peritoneal cells. While genes for many growth factors were expressed in both non-adherent and adherent macrophages, the milk fat globule-epidermal growth factor 8 protein (MFG-E8) that recognizes and takes up apoptotic cells was specifically enhanced in non-adherent cells. Furthermore, early apoptotic endothelial cells demonstrated signs of delayed apoptosis when incubated in the presence of peritoneal lavage fluid that was shown to contain MFG-E8. Functional arrays indicated that peritoneal non-adherent macrophages represent a class of macrophages, distinct from either blood monocytes or adherent cultured macrophages. CONCLUSIONS These results suggest that the adherence status of macrophages may play a major role in their functions.


North American Journal of Medical Sciences | 2010

Evaluation of a gas chromatography method for azelaic acid determination in selected biological samples.

Mahdi Garelnabi; Dmitry Litvinov; Sampath Parthasarathy

Background: Azelaic acid (AzA) is the best known dicarboxilic acid to have pharmaceutical benefits and clinical applications and also to be associated with some diseases pathophysiology. Materials and Methods: We extracted and methylesterified AzA and determined its concentration in human plasma obtained from healthy individuals and also in mice fed AzA containing diet for three months. Results: AzA was detected in Gas Chromatography (GC) and confirmed by Liquid chromatography mass spectrometry (LCMS), and gas chromatography mass spectrometry (GCMC). Our results have shown that AzA can be determined efficiently in selected biological samples by GC method with 1nM limit of detection (LoD) and the limit of quantification (LoQ); was established at 50nM. Analytical Sensitivity as assayed by hexane demonstrated an analytical sensitivity at 0.050nM. The method has demonstrated 8-10% CV batch repeatability across the sample types and 13-18.9% CV for the Within-Lab Precision analysis. The method has shown that AzA can efficiently be recovered from various sample preparation including liver tissue homogenate (95%) and human plasma (97%). Conclusions: Because of its simplicity and lower limit of quantification, the present method provides a useful tool for determining AzA in various biological sample preparations.


European Journal of Pharmacology | 2015

Aspirin may influence cellular energy status

Pratibha Kamble; Dmitry Litvinov; Chandrakala Aluganti Narasimhulu; Xueting Jiang; Sampath Parthasarathy

In our previous findings, we have demonstrated that aspirin/acetyl salicylic acid (ASA) might induce sirtuins via aryl hydrocarbon receptor (Ah receptor). Induction effects included an increase in cellular paraoxonase 1 (PON1) activity and apolipoprotein A1 (ApoA1) gene expression. As predicted, ASA and salicylic acid (SA) treatment resulted in generation of H2O2, which is known to be an inducer of mitochondrial gene Sirt4 and other downstream target genes of Sirt1. Our current mass spectroscopic studies further confirm the metabolism of the drugs ASA and SA. Our studies show that HepG2 cells readily converted ASA to SA, which was then metabolized to 2,3-DHBA. HepG2 cells transfected with aryl hydrocarbon receptor siRNA upon treatment with SA showed the absence of a DHBA peak as measured by LC-MS/MS. MS studies for Sirt1 action also showed a peak at 180.9 m/z for the deacetylated and chlorinated product formed from N-acetyl lε-lysine. Thus an increase in Sirt4, Nrf2, Tfam, UCP1, eNOS, HO1 and STAT3 genes could profoundly affect mitochondrial function, cholesterol homeostasis, and fatty acid oxidation, suggesting that ASA could be beneficial beyond simply its ability to inhibit cyclooxygenase.


Physiological Reports | 2016

Increased presence of oxidized low‐density lipoprotein in the left ventricular blood of subjects with cardiovascular disease

Chandrakala Aluganti Narasimhulu; Dmitry Litvinov; Bhaswati Sengupta; Danielle Jones; Chittoor Sai-Sudhakar; Michael S. Firstenberg; Benjamin Sun; Sampath Parthasarathy

Oxidized LDL (Ox‐LDL) and oxidative stress have been implicated in both atherosclerosis and congestive heart failure (HF) development. Here, we tested whether Ox‐LDL levels in left ventricular blood (LVB) might differ from those of venous peripheral blood (PB), and whether the level might depend on cardiac function. We also tested whether the LDL molecule is likely to have a longer residence time in the left ventricle of HF subjects with low ejection fraction (EF). The aim of this study was to determine Ox‐LDL levels, paraoxonase 1 (PON1) activity, and cholesterol efflux capacity (CEC) of PB and LVB, and correlate these values with LVEF. Sixty‐one HF patients underwent preoperative transthoracic echocardiographic assessment of ventricular function. LVEFs were determined using Simpsons biplane technique. LVB and PB levels of Ox‐LDL were determined, and PON1 activity and plasma cholesterol efflux capacity were measured. A significant increase in the levels of Ox‐LDL in LVB was noted as compared to levels in PB, even when EF was near normal. However, as ejection fraction decreased, the level of Ox‐LDL in PB approached that of the LVB. PON1 activity and cholesterol efflux studies indicated increased oxidative stress in LVB and a decreased ability to promote cholesterol efflux from lipid‐enriched macrophages. The results suggest that LVB is more oxidatively stressed compared to PB, and therefore LV tissue might be affected differently than peripheral tissues. We recently reported that brain natriuretic peptide (BNP), a marker for HF, is induced by Ox‐LDL, so it is possible localized factors within the LV could profoundly affect markers of HF.


Current Medicinal Chemistry | 2016

Cholesterol efflux and reverse cholesterol transport: Experimental approaches.

Dmitry Litvinov; Eugeny V. Savushkin; Evdokiya A. Garaeva; Alexander D. Dergunov

BACKGROUND Cholesterol efflux as a key event in reverse cholesterol transport (RCT) is considered now as both diagnostic tool and a promising target for the treatment of atherosclerosis. Radioactive in vitro cholesterol efflux assay (CEA) is the gold standard for determination of efflux at cellular level. Fluorescent tracers and stable isotope-labeled cholesterol gradually come into use as convenient tools for non-radioactive CEAs. RESULTS We review the use of various tracer-based and tracer-free methods for CEAs and for measuring RCT with focus on macrophage-specific cholesterol efflux. CEA utilizing stable isotope-labeled cholesterol is equally reliable with radioactive assay and especially well suited for the determination of both cholesterol efflux and net cholesterol flux. Fluorescent tracers cannot fully mimic cholesterol; however, they are successfully applied in CEA in specific well-defined conditions. Fluorescent CEAs can be high throughput and can provide unique information on efflux from fast cholesterol pools or with single cell resolution. Enzymatic and chromatographic CEAs are net cholesterol flux assays, and they can be applied as efflux assays when used with specific acceptors only. In vivo tests are suited for studies of cholesterol efflux and RCT at the level of the organism. They include injection of tracer-loaded macrophages, a method suitable at present for animal models only, and recently invented modification of whole body tracer kinetics with multicompartment modeling that is capable to determine cholesterol efflux from macrophages. CONCLUSION Despite the decisive role of in vitro assays in our understanding of cholesterol efflux mechanism, the in vivo assays are highly desired to study cholesterol efflux in atherosclerotic lesions and RCT in whole body.

Collaboration


Dive into the Dmitry Litvinov's collaboration.

Top Co-Authors

Avatar

Sampath Parthasarathy

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krithika Selvarajan

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Mahdi Garelnabi

University of Massachusetts Lowell

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhaswati Sengupta

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aladdin Riad

University of Central Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge