Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitry Velmeshev is active.

Publication


Featured researches published by Dmitry Velmeshev.


Journal of Alzheimer's Disease | 2015

Transcriptomics Profiling of Alzheimer's Disease Reveal Neurovascular Defects, Altered Amyloid-β Homeostasis, and Deregulated Expression of Long Noncoding RNAs

Marco Magistri; Dmitry Velmeshev; Madina Makhmutova; Mohammad Ali Faghihi

The underlying genetic variations of late-onset Alzheimers disease (LOAD) cases remain largely unknown. A combination of genetic variations with variable penetrance and lifetime epigenetic factors may converge on transcriptomic alterations that drive LOAD pathological process. Transcriptome profiling using deep sequencing technology offers insight into common altered pathways regardless of underpinning genetic or epigenetic factors and thus represents an ideal tool to investigate molecular mechanisms related to the pathophysiology of LOAD. We performed directional RNA sequencing on high quality RNA samples extracted from hippocampi of LOAD and age-matched controls. We further validated our data using qRT-PCR on a larger set of postmortem brain tissues, confirming downregulation of the gene encoding substance P (TAC1) and upregulation of the gene encoding the plasminogen activator inhibitor-1 (SERPINE1). Pathway analysis indicates dysregulation in neural communication, cerebral vasculature, and amyloid-β clearance. Beside protein coding genes, we identified several annotated and non-annotated long noncoding RNAs that are differentially expressed in LOAD brain tissues, three of them are activity-dependent regulated and one is induced by Aβ(1-42) exposure of human neural cells. Our data provide a comprehensive list of transcriptomics alterations in LOAD hippocampi and warrant holistic approach including both coding and non-coding RNAs in functional studies aimed to understand the pathophysiology of LOAD.


Molecular Autism | 2013

Expression of non-protein-coding antisense RNAs in genomic regions related to autism spectrum disorders

Dmitry Velmeshev; Marco Magistri; Mohammad Ali Faghihi

BackgroundAutism spectrum disorders (ASD) manifest with neurodevelopmental phenotypes including communicative, social and behavioral impairments that affect as many as 1 in 88 children. The majority of autism cases have no known genetic cause, suggesting complex genetics of the disorder, but a few genes of large effect have been identified.MethodsIn order to identify novel ASD genetic correlates, we investigated non-protein coding RNAs (ncRNAs) which are abundantly transcribed from the human genome, enriched in the brain, and have been implicated in neurodevelopmental disorders. Using an algorithm that we developed, we examined a publicly available transcriptomics database, AceView, to identify the natural antisense transcripts (NATs) that overlap with known autism-related genes. We validated the presence and differential expression of NATs in different brain regions of ASD and control brains using qRT-PCR. Additionally, we investigated the subcellular localization of these transcripts in a neuronal cell line using RNA-sequencing (RNA-seq).ResultsWe found noncoding antisense RNA transcripts at approximately 40% of loci previously implicated in ASD. We confirmed the expression of 10 antisense RNAs in different postmortem human brain tissues. The expression of five antisense transcripts was found to be region-specific, suggesting a role for these ncRNAs in the development and function of specific brain regions. Some antisense RNAs overlapping suspected ASD genes exhibited concordant expression relative to their sense protein-coding genes, while other sense-antisense pairs demonstrate a discordant relationship. Interestingly, the antisense RNA corresponding to the SYNGAP1 locus (SYNGAP1-AS) was found to be differentially expressed in brain regions of patients with ASD compared to control individuals. RNA-seq analysis of subcellular compartments from SH-SY5Y human neuroblastoma cells demonstrated that antisense RNAs to ASD candidate genes are predominantly expressed in the nucleoplasmic or chromatin compartments, implying their involvement in nuclear-associated processes.ConclusionsOur data suggests that NATs are abundantly expressed from ASD-related loci and provide evidence for their roles in target gene regulation, neurodevelopment and autism pathogenesis. This class of RNA should therefore be considered in functional studies aimed at understanding genetic risk factors for ASD.


Molecular therapy. Nucleic acids | 2014

De-repressing LncRNA-Targeted Genes to Upregulate Gene Expression: Focus on Small Molecule Therapeutics

Roya Pedram Fatemi; Dmitry Velmeshev; Mohammad Ali Faghihi

Non-protein coding RNAs (ncRNAs) make up the overwhelming majority of transcripts in the genome and have recently gained attention for their complex regulatory role in cells, including the regulation of protein-coding genes. Furthermore, ncRNAs play an important role in normal development and their expression levels are dysregulated in several diseases. Recently, several long noncoding RNAs (lncRNAs) have been shown to alter the epigenetic status of genomic loci and suppress the expression of target genes. This review will present examples of such a mechanism and focus on the potential to target lncRNAs for achieving therapeutic gene upregulation by de-repressing genes that are epigenetically silenced in various diseases. Finally, the potential to target lncRNAs, through their interactions with epigenetic enzymes, using various tools, such as small molecules, viral vectors and antisense oligonucleotides, will be discussed. We suggest that small molecule modulators of a novel class of drug targets, lncRNA-protein interactions, have great potential to treat some cancers, cardiovascular disease, and neurological disorders.


PLOS ONE | 2014

Expression of Olfactory Signaling Genes in the Eye

Alexey Pronin; Konstantin Levay; Dmitry Velmeshev; Mohammad Ali Faghihi; Valery I. Shestopalov; Vladlen Z. Slepak

Purpose To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors. Methods Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy. Results We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles. Conclusions Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment.


Current Alzheimer Research | 2016

The BET-Bromodomain Inhibitor JQ1 Reduces Inflammation and Tau Phosphorylation at Ser396 in the Brain of the 3xTg Model of Alzheimer’s Disease

Marco Magistri; Dmitry Velmeshev; Madina Makhmutova; Prutha Patel; Gregory C. Sartor; Claude Henry Volmar; Claes Wahlestedt; Mohammad Ali Faghihi

Abstract: Background Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by well-defined neuropathological brain changes including amyloid plaques, neurofibrillary tangles and the presence of chronic neuroinflammation. Objective: The brain penetrant BET bromodomain inhibitor JQ1 has been shown to regulate inflammation responses in vitro and in vivo, but its therapeutic potential in AD is currently unknown. Method: Three-month-old 3xTg mice were injected once a day with JQ1 (50 mg/kg) or vehicle for 15 weeks. At the end of the treatment learning and memory was assessed using the modified Barnes maze and the Y maze behavioral tests. Tissue from the brain and other organs was collected for molecular evaluation of neuroinflammation tau pathology and amyloid β. 
Results: JQ1 treatment reduced splenomegaly and neuroinflammation in the brain of treated mice where we observed a reduction in the expression of the pro-inflammatory modulators Il-1b, Il-6, Tnfa, Ccl2, Nos2 and Ptgs2. Additionally, JQ1-treated mice showed a reduction of tau phosphorylation at Ser396 in the hippocampus and frontal cortex while total levels of tau remained unaffected. On the other hand, JQ1 did not ameliorate learning and memory deficits in 7-month-old 3xTg mice. Conclusion: Taken together, our data suggest that BET bromodomain inhibitors hold the promise to be used for the treatment of neurological disorders characterized by neuroinflammation.


Frontiers in Genetics | 2015

Changes in expression of the long non-coding RNA FMR4 associate with altered gene expression during differentiation of human neural precursor cells.

Veronica J. Peschansky; Chiara Pastori; Zane Zeier; Dario Motti; Katya Wentzel; Dmitry Velmeshev; Marco Magistri; John L. Bixby; Vance Lemmon; Jose P. Silva; Claes Wahlestedt

CGG repeat expansions in the Fragile X mental retardation 1 (FMR1) gene are responsible for a family of associated disorders characterized by either intellectual disability and autism Fragile X Syndrome (FXS), or adult-onset neurodegeneration Fragile X-associated Tremor/Ataxia Syndrome. However, the FMR1 locus is complex and encodes several long non-coding RNAs, whose expression is altered by repeat expansion mutations. The role of these lncRNAs is thus far unknown; therefore we investigated the functionality of FMR4, which we previously identified. “Full”-length expansions of the FMR1 triplet repeat cause silencing of both FMR1 and FMR4, thus we are interested in potential loss-of-function that may add to phenotypic manifestation of FXS. Since the two transcripts do not exhibit cis-regulation of one another, we examined the potential for FMR4 to regulate target genes at distal genomic loci using gene expression microarrays. We identified FMR4-responsive genes, including the methyl-CpG-binding domain protein 4 (MBD4). Furthermore, we found that in differentiating human neural precursor cells, FMR4 expression is developmentally regulated in opposition to expression of both FMR1 (which is expected to share a bidirectional promoter with FMR4) and MBD4. We therefore propose that FMR4’s function is as a gene-regulatory lncRNA and that this transcript may function in normal development. Closer examination of FMR4 increases our understanding of the role of regulatory lncRNA and the consequences of FMR1 repeat expansions.


Journal of Biological Chemistry | 2015

The N-terminal Set-β Protein Isoform Induces Neuronal Death

Ephraim F. Trakhtenberg; Melina I. Morkin; Karan H. Patel; Stephanie G. Fernandez; Alan Sang; Peter X. Shaw; Xiongfei Liu; Yan Wang; Gregory Mlacker; Han Gao; Dmitry Velmeshev; Susan M. Dombrowski; Michael P. Vitek; Jeffrey L. Goldberg

Background: Set-β protein can suppress or promote neuronal recovery. We investigated Set-β isoforms to understand its different roles in neurons. Results: Neurons express several Set-β transcripts, Set-β proteins localize to different compartments, and the N-terminal Set-β induces neuronal death. Conclusion: N-terminal Set-β induces neuronal death. Other isoforms could play different roles. Significance: Different Set-β isoforms could underlie its diverse roles in neurons. Set-β protein plays different roles in neurons, but the diversity of Set-β neuronal isoforms and their functions have not been characterized. The expression and subcellular localization of Set-β are altered in Alzheimer disease, cleavage of Set-β leads to neuronal death after stroke, and the full-length Set-β regulates retinal ganglion cell (RGC) and hippocampal neuron axon growth and regeneration in a subcellular localization-dependent manner. Here we used various biochemical approaches to investigate Set-β isoforms and their role in the CNS, using the same type of neurons, RGCs, across studies. We found multiple alternatively spliced isoforms expressed from the Set locus in purified RGCs. Set transcripts containing the Set-β-specific exon were the most highly expressed isoforms. We also identified a novel, alternatively spliced Set-β transcript lacking the nuclear localization signal and demonstrated that the full-length (∼39-kDa) Set-β is localized predominantly in the nucleus, whereas a shorter (∼25-kDa) Set-β isoform is localized predominantly in the cytoplasm. Finally, we show that an N-terminal Set-β cleavage product can induce neuronal death.


Molecular and Cellular Neuroscience | 2016

The long non-coding RNA FMR4 promotes proliferation of human neural precursor cells and epigenetic regulation of gene expression in trans

Veronica J. Peschansky; Chiara Pastori; Zane Zeier; Katya Wentzel; Dmitry Velmeshev; Marco Magistri; Jose P. Silva; Claes Wahlestedt

Triplet repeat expansions in the Fragile X mental retardation 1 (FMR1) gene cause either intellectual disability and autism, or adult-onset neurodegeneration, with poorly understood variability in presentation. Previous studies have identified several long noncoding RNAs (lncRNAs) at the FMR1 locus, including FMR4. Similarly to FMR1, FMR4 is silenced by large-repeat expansions that result in enrichment of DNA and histone methylation within the shared promoter and repeat sequence, suggesting a possible role for this noncoding RNA in the pathophysiology of Fragile X. We therefore assessed the functional role of FMR4 to gain further insight into the molecular processes in Fragile X-associated disorders. Previous work showed that FMR4 does not exhibit cis-regulation of FMR1. Here, we found that FMR4 is a chromatin-associated transcript and, using genome-wide chromatin immunoprecipitation experiments, showed that FMR4 alters the chromatin state and the expression of several hundred genes in trans. Among the genes regulated by FMR4, we found enrichment for those involved in neural development and cellular proliferation. S-phase marker assays further demonstrated that FMR4 may promote cellular proliferation, rather than differentiation, of human neural precursor cells (hNPCs). By establishing this novel function for FMR4 in hNPCs, we lend support to existing evidence of the epigenetic involvement of lncRNA in nervous system development, and increase our understanding of the complex pathogenesis underlying neurological disorders associated with FMR1 repeat expansions.


European Journal of Neuroscience | 2016

A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells.

Marco Magistri; Nathalie Khoury; Emilia Maria Cristina Mazza; Dmitry Velmeshev; Jae K. Lee; Silvio Bicciato; Pantelis Tsoulfas; Mohammad Ali Faghihi

Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self‐renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing. Here we used an unbiased transcriptomic analysis to characterize in vitro culture of human NPCs and to define the gene expression programs activated during the differentiation of these cells into astrocytes using FBS or the combination of CNTF and BMP4. Our results demonstrate that in vitro cultures of human NPCs isolated during the gliogenic phase of neurodevelopment mainly consist of radial glial cells (RGCs) and glia‐restricted progenitor cells. In these cells the combination of CNTF and BMP4 activates the JAK/STAT and SMAD signaling cascades, leading to the inhibition of oligodendrocytes lineage commitment and activation of astrocytes differentiation. On the other hand, FBS‐derived astrocytes have properties of reactive astrocytes. Our work suggests that in vitro culture of human NPCs represents a valuable cellular system to study human disorders characterized by impairment of astrocytes development and function. Our datasets represent an important resource for researchers studying human astrocytes development and might set the basis for the discovery of novel human‐specific astrocyte markers.


BMC Genomics | 2016

CANEapp: a user-friendly application for automated next generation transcriptomic data analysis

Dmitry Velmeshev; Patrick Lally; Marco Magistri; Mohammad Ali Faghihi

BackgroundNext generation sequencing (NGS) technologies are indispensable for molecular biology research, but data analysis represents the bottleneck in their application. Users need to be familiar with computer terminal commands, the Linux environment, and various software tools and scripts. Analysis workflows have to be optimized and experimentally validated to extract biologically meaningful data. Moreover, as larger datasets are being generated, their analysis requires use of high-performance servers.ResultsTo address these needs, we developed CANEapp (application for Comprehensive automated Analysis of Next-generation sequencing Experiments), a unique suite that combines a Graphical User Interface (GUI) and an automated server-side analysis pipeline that is platform-independent, making it suitable for any server architecture. The GUI runs on a PC or Mac and seamlessly connects to the server to provide full GUI control of RNA-sequencing (RNA-seq) project analysis. The server-side analysis pipeline contains a framework that is implemented on a Linux server through completely automated installation of software components and reference files. Analysis with CANEapp is also fully automated and performs differential gene expression analysis and novel noncoding RNA discovery through alternative workflows (Cuffdiff and R packages edgeR and DESeq2). We compared CANEapp to other similar tools, and it significantly improves on previous developments. We experimentally validated CANEapp’s performance by applying it to data derived from different experimental paradigms and confirming the results with quantitative real-time PCR (qRT-PCR). CANEapp adapts to any server architecture by effectively using available resources and thus handles large amounts of data efficiently. CANEapp performance has been experimentally validated on various biological datasets. CANEapp is available free of charge at http://psychiatry.med.miami.edu/research/laboratory-of-translational-rna-genomics/CANE-app.ConclusionsWe believe that CANEapp will serve both biologists with no computational experience and bioinformaticians as a simple, timesaving but accurate and powerful tool to analyze large RNA-seq datasets and will provide foundations for future development of integrated and automated high-throughput genomics data analysis tools. Due to its inherently standardized pipeline and combination of automated analysis and platform-independence, CANEapp is an ideal for large-scale collaborative RNA-seq projects between different institutions and research groups.

Collaboration


Dive into the Dmitry Velmeshev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge