Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitry Yarmolinsky is active.

Publication


Featured researches published by Dmitry Yarmolinsky.


Plant Physiology | 2013

Sulfite Reductase Protects Plants Against Sulfite Toxicity

Dmitry Yarmolinsky; Galina Brychkova; Robert Fluhr; Moshe Sagi

Summary: Sulfite oxidase and the key elements of the sulfite network enzymes that include sulfite reductase, UDP-sulfoquinovose synthase, β-mercaptopyruvate sulfurtransferases, and adenosine-5′-phosphosulfate reductase has a important role in maintaining sulfite homeostasis, where sulfite appears to act as an orchestrating signal molecule. Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum ‘Rheinlands Ruhm’) and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation.


Plant Science | 2012

The determination of sulfite levels and its oxidation in plant leaves

Galina Brychkova; Dmitry Yarmolinsky; Robert Fluhr; Moshe Sagi

Sulfur is the sixth most abundant element in life and an important building block of proteins and cellular metabolites. Plants like bacteria can synthesize their sulfur-containing biomolecules from sulfate, where sulfite is an intermediate of the sulfur assimilation pathway. Above a certain threshold SO(2)/sulfite is cytotoxic and is rapidly metabolized to avoid damage. However, the existing data show considerable differences in basal sulfite levels both between species and apparent discrepancies in measured levels in the same species. In order to resolve this question we employed a sulfite detection method using chicken sulfite oxidase and developed an independent enzymatic assay, based on the specific detection of sulfite by sulfite reductase and compared those measurements to a modified colorimetric fuchsin-based method, specific for sulfite detection. We show here that when properly used the sulfite levels detected by the three methods can yield identical results. Furthermore, to examine the capacity of the plant to detoxify sulfite we injected sub-lethal sulfite solutions (yet, several folds higher than the basal levels) into Arabidopsis and tomato leaves and monitored the excess sulfite turnover. Within 3h of sulfite injection, more than 80% of the injected sulfite in Arabidopsis and 91% in tomato were oxidized to sulfate, demonstrating the high capacity of the sulfite oxidation mechanism/s in plants.


Plant Physiology | 2014

Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants

Dmitry Yarmolinsky; Galina Brychkova; Assylay Kurmanbayeva; Aizat Bekturova; Yvonne Ventura; Inna Khozin-Goldberg; Amir Eppel; Robert Fluhr; Moshe Sagi

Insufficient sulfite reductase activity activates the upstream components of the sulfate reduction pathway in tomato plants, resulting in accumulation of toxic sulfite and early leaf senescence. Sulfite reductase (SiR) is an essential enzyme of the sulfate assimilation reductive pathway, which catalyzes the reduction of sulfite to sulfide. Here, we show that tomato (Solanum lycopersicum) plants with impaired SiR expression due to RNA interference (SIR Ri) developed early leaf senescence. The visual chlorophyll degradation in leaves of SIR Ri mutants was accompanied by a reduction of maximal quantum yield, as well as accumulation of hydrogen peroxide and malondialdehyde, a product of lipid peroxidation. Interestingly, messenger RNA transcripts and proteins involved in chlorophyll breakdown in the chloroplasts were found to be enhanced in the mutants, while transcripts and their plastidic proteins, functioning in photosystem II, were reduced in these mutants compared with wild-type leaves. As a consequence of SiR impairment, the levels of sulfite, sulfate, and thiosulfate were higher and glutathione levels were lower compared with the wild type. Unexpectedly, in a futile attempt to compensate for the low glutathione, the activity of adenosine-5′-phosphosulfate reductase was enhanced, leading to further sulfite accumulation in SIR Ri plants. Increased sulfite oxidation to sulfate and incorporation of sulfite into sulfoquinovosyl diacylglycerols were not sufficient to maintain low basal sulfite levels, resulting in accumulative leaf damage in mutant leaves. Our results indicate that, in addition to its biosynthetic role, SiR plays an important role in prevention of premature senescence. The higher sulfite is likely the main reason for the initiation of chlorophyll degradation, while the lower glutathione as well as the higher hydrogen peroxide and malondialdehyde additionally contribute to premature senescence in mutant leaves.


Plant and Cell Physiology | 2012

A Novel In-gel Assay and an Improved Kinetic Assay for Determining In Vitro Sulfite Reductase Activity in Plants

Galina Brychkova; Dmitry Yarmolinsky; Yvonne Ventura; Moshe Sagi

Sulfite reductase (SiR; EC 1.8.7.1), an essential enzyme in the sulfate reduction pathway, catalyzes the reduction of sulfite to sulfide, as an intermediate for cysteine biosynthesis. The commonly used kinetic assay for the detection of in vitro SiR activity in plants is based on a coupled reaction, in which the sulfide produced is converted to cysteine through the presence, in the assay medium, of O-acetylserine sulfhydralase (EC 2.5.1.47) and its substrate, O-acetylserine. An improved kinetic assay for SiR activity in crude desalted protein extracts was developed. The improvement was based on pre-treatment of the protein with tungstate, which improved SiR activity in Arabidopsis and tomato leaf by 29 and 12%, respectively, and the addition of NADPH to the reaction medium, which increased SiR activity by 1.6- and 2.8-fold in Arabidopsis and tomato, respectively, in comparison with the current protocols. Despite the availability and reliability of the kinetic assay, there is currently no assay that enables the direct detection of SiR in relatively large numbers of samples. To meet this need, we developed a novel in-gel assay to detect SiR activity in crude extracts. The method is based on the detection of a brownish-black precipitated band of lead sulfide, formed by the reaction of lead acetate with sulfide. The in-gel assay for SiR activity is reliable, sensitive and technically simpler than the kinetic assay, and opens up the possibility for detecting active SiR isoenzymes and splice variants.


Plant Physiology | 2018

Stomatal VPD Response: There Is More to the Story Than ABA

Ebe Merilo; Dmitry Yarmolinsky; Pirko Jalakas; Helen Parik; Ingmar Tulva; Bakhtier Rasulov; Kalle Kilk; Hannes Kollist

ABA level is important for steady-state stomatal conductance, and OST1 is crucial for air humidity-induced stomatal closure. Guard cells shrink and close stomatal pores when air humidity decreases (i.e. when the difference between the vapor pressures of leaf and atmosphere [VPD] increases). The role of abscisic acid (ABA) in VPD-induced stomatal closure has been studied using ABA-related mutants that respond to VPD in some studies and not in others. The importance of ABA biosynthesis in guard cells versus vasculature for whole-plant stomatal regulation is unclear as well. Here, we show that Arabidopsis (Arabidopsis thaliana) lines carrying mutations in different steps of ABA biosynthesis as well as pea (Pisum sativum) wilty and tomato (Solanum lycopersicum) flacca ABA-deficient mutants had higher stomatal conductance compared with wild-type plants. To characterize the role of ABA production in different cells, we generated transgenic plants where ABA biosynthesis was rescued in guard cells or phloem companion cells of an ABA-deficient mutant. In both cases, the whole-plant stomatal conductance, stunted growth phenotype, and leaf ABA level were restored to wild-type values, pointing to the redundancy of ABA sources and to the effectiveness of leaf ABA transport. All ABA-deficient lines closed their stomata rapidly and extensively in response to high VPD, whereas plants with mutated protein kinase OST1 showed stunted VPD-induced responses. Another strongly ABA-insensitive mutant, defective in the six ABA PYR/RCAR receptors, responded to changes in VPD in both directions strongly and symmetrically, indicating that its VPD-induced closure could be passive hydraulic. We discuss that both the VPD-induced passive hydraulic stomatal closure and the stomatal VPD regulation of ABA-deficient mutants may be conditional on the initial pretreatment stomatal conductance.


Plant Physiology | 2017

Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification

Sudhakar Srivastava; Galina Brychkova; Dmitry Yarmolinsky; Aigerim Soltabayeva; Talya Samani; Moshe Sagi

AAO4 plays a critical role in delaying silique senescence by catalyzing aldehyde detoxification and generates both hydrogen peroxide and superoxide. The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1–AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification.


Plants (Basel, Switzerland) | 2015

Sulfite Oxidase Activity Is Essential for Normal Sulfur, Nitrogen and Carbon Metabolism in Tomato Leaves

Galina Brychkova; Dmitry Yarmolinsky; Albert Batushansky; Vladislav Grishkevich; Inna Khozin-Goldberg; Aaron Fait; Rachel Amir; Robert Fluhr; Moshe Sagi

Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm). Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S) metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA), Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA) cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants.


ACS Chemical Biology | 2017

A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration

Aditya S. Vaidya; Francis C. Peterson; Dmitry Yarmolinsky; Ebe Merilo; Inge Verstraeten; Sang-Youl Park; Dezi Elzinga; Amita Kaundal; Jonathan Helander; Jorge Lozano-Juste; Masato Otani; Kevin Wu; Davin R. Jensen; Hannes Kollist; Brian F. Volkman; Sean R. Cutler

Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactins arylnitrile mimics ABAs cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABAs carboxylate and C6 methyl groups, respectively. Isothermal titration calorimetry measurements show that cyanabactins compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by the genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with a wide spectrum of ABA-like activities that defines subfamily IIIA receptors as key target sites for manipulating transpiration.


The Plant Cell | 2018

The receptor-like pseudokinase GHR1 is required for stomatal closure

Maija Sierla; Hanna Hõrak; Kirk Overmyer; Cezary Waszczak; Dmitry Yarmolinsky; Tobias Maierhofer; Julia P. Vainonen; Konstantin Denessiouk; Jarkko Salojärvi; Kristiina Laanemets; Kadri Tõldsepp; Triin Vahisalu; Adrien Gauthier; Tuomas Puukko; Lars Paulin; Petri Auvinen; Dietmar Geiger; Rainer Hedrich; Hannes Kollist; Jaakko Kangasjärvi

GHR1 is a receptor-like pseudokinase that activates SLOW ANION CHANNEL1 and acts in stomatal closure through its scaffolding functions rather than by directly phosphorylating its target proteins. Guard cells control the aperture of stomatal pores to balance photosynthetic carbon dioxide uptake with evaporative water loss. Stomatal closure is triggered by several stimuli that initiate complex signaling networks to govern the activity of ion channels. Activation of SLOW ANION CHANNEL1 (SLAC1) is central to the process of stomatal closure and requires the leucine-rich repeat receptor-like kinase (LRR-RLK) GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), among other signaling components. Here, based on functional analysis of nine Arabidopsis thaliana ghr1 mutant alleles identified in two independent forward-genetic ozone-sensitivity screens, we found that GHR1 is required for stomatal responses to apoplastic reactive oxygen species, abscisic acid, high CO2 concentrations, and diurnal light/dark transitions. Furthermore, we show that the amino acid residues of GHR1 involved in ATP binding are not required for stomatal closure in Arabidopsis or the activation of SLAC1 anion currents in Xenopus laevis oocytes and present supporting in silico and in vitro evidence suggesting that GHR1 is an inactive pseudokinase. Biochemical analyses suggested that GHR1-mediated activation of SLAC1 occurs via interacting proteins and that CALCIUM-DEPENDENT PROTEIN KINASE3 interacts with GHR1. We propose that GHR1 acts in stomatal closure as a scaffolding component.


Plant and Cell Physiology | 2012

Kinetic Assays for Determining In Vitro APS Reductase Activity in Plants without the Use of Radioactive Substances

Galina Brychkova; Dmitry Yarmolinsky; Moshe Sagi

Collaboration


Dive into the Dmitry Yarmolinsky's collaboration.

Top Co-Authors

Avatar

Moshe Sagi

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Galina Brychkova

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Robert Fluhr

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Aizat Bekturova

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Assylay Kurmanbayeva

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominic Standing

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Inna Khozin

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Inna Khozin-Goldberg

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Yvonne Ventura

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge