Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitry Zemlyanov is active.

Publication


Featured researches published by Dmitry Zemlyanov.


Journal of Applied Physics | 2010

Large-scale graphitic thin films synthesized on Ni and transferred to insulators: Structural and electronic properties

Helin Cao; Qingkai Yu; Robert Colby; Deepak Pandey; C. S. Park; Jie Lian; Dmitry Zemlyanov; Isaac Childres; Vladimir P. Drachev; Eric A. Stach; Muhammad Mustafa Hussain; Hao Li; S. S. Pei; Yong P. Chen

We present a comprehensive study of the structural and electronic properties of ultrathin films containing graphene layers synthesized by chemical vapor deposition based surface segregation on polycrystalline Ni foils then transferred onto insulating SiO2/Si substrates. Films of size up to several mm’s have been synthesized. Structural characterizations by atomic force microscopy, scanning tunneling microscopy, cross-sectional transmission electron microscopy (XTEM), and Raman spectroscopy confirm that such large-scale graphitic thin films (GTF) contain both thick graphite regions and thin regions of few-layer graphene. The films also contain many wrinkles, with sharply-bent tips and dislocations revealed by XTEM, yielding insights on the growth and buckling processes of the GTF. Measurements on mm-scale back-gated transistor devices fabricated from the transferred GTF show ambipolar field effect with resistance modulation ∼50% and carrier mobilities reaching ∼2000 cm2/V s. We also demonstrate quantum tra...


Applied Physics Letters | 2007

Interface studies of GaAs metal-oxide-semiconductor structures using atomic-layer-deposited HfO2∕Al2O3 nanolaminate gate dielectric

T Yang; Yi Xuan; Dmitry Zemlyanov; Tian Shen; Yue Wu; J. M. Woodall; Peide D. Ye; F. S. Aguirre-Tostado; M. Milojevic; Stephen McDonnell; Robert M. Wallace

A systematic capacitance-voltage study has been performed on GaAs metal-oxide-semiconductor (MOS) structures with atomic-layer-deposited HfO2∕Al2O3 nanolaminates as gate dielectrics. A HfO2∕Al2O3 nanolaminate gate dielectric improves the GaAs MOS characteristics such as dielectric constant, breakdown voltage, and frequency dispersion. A possible origin for the widely observed larger frequency dispersion on n-type GaAs than p-type GaAs is discussed. Further experiments show that the observed hysteresis is mainly from the mobile changes and traps induced by HfO2 in bulk oxide instead of those at oxide/GaAs interface.


Applied Physics Letters | 2011

Polarity effects in the x-ray photoemission of ZnO and other wurtzite semiconductors

M. W. Allen; Dmitry Zemlyanov; G.I.N. Waterhouse; J. Metson; T. D. Veal; C. F. McConville; S. M. Durbin

Significant polarity-related effects were observed in the near-surface atomic composition and valence band electronic structure of ZnO single crystals, investigated by x-ray photoemission spectroscopy using both Al Kα (1486.6 eV) and synchrotron radiation (150 to 1486 eV). In particular, photoemission from the lowest binding energy valence band states was found to be significantly more intense on the Zn-polar face compared to the O-polar face. This is a consistent effect that can be used as a simple, nondestructive indicator of crystallographic polarity in ZnO and other wurtzite semiconductors.


Langmuir | 2008

Assembly of Dithiocarbamate-Anchored Monolayers on Gold Surfaces in Aqueous Solutions

Heng Zhu; Donna M. Coleman; Christopher J. Dehen; Iris Geisler; Dmitry Zemlyanov; Jean Chmielewski; Garth J. Simpson; Alexander Wei

Dithiocarbamates (DTCs) can be formed by the in situ condensation of polar alkylamines with CS 2, and assembled into dithiocarbamate-anchored monolayers (DAMs) on Au substrates in aqueous solutions. Primary and secondary amines can both be used to prepare DTCs, but have significant differences in their reactivities and product stabilities. Ultraviolet absorption spectroscopy provides a convenient method for monitoring in situ DTC formation as well as the formation of potential byproducts. The kinetics of DAM assembly on Au substrates as measured by second harmonic generation (SHG) indicated first-order rate processes and saturation coverages similar to those of alkanethiols on Au. However, the rate of adsorption did not change with DTC concentration in a manner expected of Langmuir kinetics, and is attributed to the competitive adsorption of alkylammonium counterions to the freshly oxidized Au substrate. These analyses establish a practical range of conditions for preparing DAMs from polar amines using in situ DTC formation.


Angewandte Chemie | 2012

Hydrogen Production by Methanol Steam Reforming on Copper Boosted by Zinc-Assisted Water Activation

Christoph Rameshan; Werner Stadlmayr; Simon Penner; Harald Lorenz; Norbert Memmel; Michael Hävecker; Raoul Blume; Detre Teschner; Tulio C. R. Rocha; Dmitry Zemlyanov; Axel Knop-Gericke; Robert Schlögl; Bernhard Klötzer

For use of polymer electrolyte membrane fuel cells (PEMFC) in mobile power applications, an efficient source of CO-depleted hydrogen is needed. To avoid technical and safety problems of hydrogen handling, storage, and transport, methanol can be used as practical and abundant energy carrier for on-board H2 generation, as it has the advantage of a high energy density. Hydrogen generation from methanol can be performed by catalytic methanol steam reforming (MSR): CH3OH+H2O→CO2+3 H2. Methanol conversion must be carried out with very high CO2/H2 selectivity to avoid CO poisoning of the fuel-cell anode. A number of promising selective MSR catalysts are already available. Apart from advanced copper-based catalysts,1, 2 special attention is presently paid to the highly MSR-selective reduced state of Pd/ZnO,3 containing a particularily stable intermetallic PdZn (1:1) active phase.3, 4 Therefore, we recently studied related “inverse” near-surface PdZn intermetallic phases, showing that three-dimensional PdZn active site ensembles are equally important for selective dehydrogenation of methanol (thus avoiding CO) and for efficient water activation.5 For the less costly Cu/ZnO catalysts, originally designed for methanol synthesis, improvements towards a technical MSR application regarding sintering stability, pyrophoricity, and selectivity are still required. Empirical development of Cu/ZnO catalyst preparation and activation has aimed in a particularily large Cu0–ZnO contact.6 Nevertheless, it is very difficult to derive an unambiguous causality for the role of the contact on technical catalysts. It is known that zinc leads to an improvement in the desired properties, but a clear assignment of a predominant promotional effect (both from the theoretical and experimental side) is still missing. In the Cu/ZnO literature, seemingly incompatible model interpretations can be found, involving the “metallic copper model”,7 the “special site model”,8 the “morphology model”,7, 9 the “spillover model”,10 and last but not least the “Cu-Zn alloy model”.8, 11 Consequently, the Cu-ZnO(H) contact most likely constitutes a combination of promotional effects. The central aim of our study is to highlight the aspect of zinc-promoted water activation. This is achieved by using an ultrahigh-vacuum (UHV) “inverse” model catalyst approach, which, in contrast to investigations on real catalyst systems, allows the zinc segregation behavior and the changes in redox chemistry of both copper and zinc to be better followed. This provides a solid basis for directional promotion of microkinetic steps leading to enhanced CO2 selectivity.


Langmuir | 2014

Citrate-stabilized gold nanorods.

Jonathan G. Mehtala; Dmitry Zemlyanov; Joann P. Max; Naveen Reddy Kadasala; Shou Zhao; Alexander Wei

Stable aqueous dispersions of citrate-stabilized gold nanorods (cit-GNRs) have been prepared in scalable fashion by surfactant exchange from cetyltrimethylammonium bromide (CTAB)-stabilized GNRs, using polystyrenesulfonate (PSS) as a detergent. The surfactant exchange process was monitored by infrared spectroscopy, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS). The latter established the quantitative displacement of CTAB (by PSS) and of PSS (by citrate). The Cit-GNRs are indefinitely stable at low ionic strength, and are conducive to further ligand exchange without loss of dispersion stability. The reliability of the surface exchange process supports the systematic analysis of ligand structure on the hydrodynamic size of GNRs, as described in a companion paper.


Angewandte Chemie | 2014

A Reusable Unsupported Rhenium Nanocrystalline Catalyst for Acceptorless Dehydrogenation of Alcohols through γ-C–H Activation†

Jing Yi; Jeffrey T. Miller; Dmitry Zemlyanov; Ruihong Zhang; Paul J. Dietrich; Fabio H. Ribeiro; Sergey Suslov; Mahdi M. Abu-Omar

Rhenium nanocrystalline particles (Re NPs), of 2 nm size, were prepared from NH4ReO4 under mild conditions in neat alcohol. The unsupported Re NPs convert secondary and benzylic alcohols to ketones and aldehydes, respectively, through catalytic acceptorless dehydrogenation (AD). The oxidant- and acceptor-free neat dehydrogenation of alcohols to obtain dihydrogen gas is a green and atom-economical process for making carbonyl compounds. Secondary aliphatic alcohols give quantitative conversion and yield. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Re K-edge X-ray absorption near-edge structure (XANES), and X-ray absorption fine structure (EXAFS) data confirmed the characterization of the Re NPs as metallic rhenium with surface oxidation to rhenium(IV) oxide (ReO2). Isotope labeling experiments revealed a novel γ-CH activation mechanism for AD of alcohols.


Nanotechnology | 2016

Surface chemistry of black phosphorus under a controlled oxidative environment

Wei Luo; Dmitry Zemlyanov; Cory Milligan; Yuchen Du; Lingming Yang; Yanqing Wu; Peide D. Ye

Black phosphorus (BP), the bulk counterpart of monolayer phosphorene, is a relatively stable phosphorus allotrope at room temperature. However, monolayer phosphorene and ultra-thin BP layers degrade in ambient atmosphere. In this paper, we report the investigation of BP oxidation and discuss the reaction mechanism based on the x-ray photoelectron spectroscopy (XPS) data. The kinetics of BP oxidation was examined under various well-controlled conditions, namely in 5% O2/Ar, 2.3% H2O/Ar, and 5% O2 and 2.3% H2O/Ar. At room temperature, the BP surface is demonstrated not to be oxidized at a high oxidation rate in 5% O2/Ar nor in 2.3% H2O/Ar, according to XPS, with the thickness of the oxidized phosphorus layer <5 Å for 5 h. On the other hand, in the O2/H2O mixture, a 30 Å thickness oxide layer was detected already after 2 h of the treatment. This result points to a synergetic effect of water and oxygen in the BP oxidation. The oxidation effect was also studied in applications to the electrical measurements of BP field-effect transistors (FETs) with or without passivation. The electrical performance of BP FETs with atomic layer deposition (ALD) dielectric passivation or h-BN passivation formed in a glove-box environment are also presented.


ACS Applied Materials & Interfaces | 2014

Palladium Nanoparticle Formation on TiO2(110) by Thermal Decomposition of Palladium(II) Hexafluoroacetylacetonate

Amir Gharachorlou; Michael D. Detwiler; Anna V. Nartova; Junling Lu; Jeffrey W. Elam; W. Nicholas Delgass; Fabio H. Ribeiro; Dmitry Zemlyanov

Palladium nanoparticles were synthesized by thermal decomposition of palladium(II) hexafluoroacetylacetonate (Pd(hfac)2), an atomic layer deposition (ALD) precursor, on a TiO2(110) surface. According to X-ray photoelectron spectroscopy (XPS), Pd(hfac)2 adsorbs on TiO2(110) dissociatively yielding Pd(hfac)(ads), hfac(ads), and adsorbed fragments of the hfac ligand at 300 K. A (2 × 1) surface overlayer was observed by scanning tunneling microscopy (STM), indicating that hfac adsorbs in a bidentate bridging fashion across two Ti 5-fold atoms and Pd(hfac) adsorbs between two bridging oxygen atoms on the surface. Annealing of the Pd(hfac)(ads) and hfac(ads) species at 525 K decomposed the adsorbed hfac ligands, leaving PdO-like species and/or Pd atoms or clusters. Above 575 K, the XPS Pd 3d peaks shift toward lower binding energies and Pd nanoparticles are observed by STM. These observations point to the sintering of Pd atoms and clusters to Pd nanoparticles. The average height of the Pd nanoparticles was 1.2 ± 0.6 nm at 575 K and increased to 1.7 ± 0.5 nm following annealing at 875 K. The Pd coverage was estimated from XPS and STM data to be 0.05 and 0.03 monolayers (ML), respectively, after the first adsorption/decomposition cycle. The amount of palladium deposited on the TiO2(110) surface increased linearly with the number of adsorption/decomposition cycles with a growth rate of 0.05 ML or 0.6 Å per cycle. We suggest that the removal of the hfac ligand and fragments eliminates the nucleation inhibition of Pd nanoparticles previously observed for the Pd(hfac)2 precursor on TiO2.


Catalysis Science & Technology | 2015

Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts

Astrid Wolfbeisser; Bernhard Klötzer; Lukas Mayr; Raffael Rameshan; Dmitry Zemlyanov; Johannes Bernardi; Karin Föttinger; Günther Rupprechter

We explored the surface chemistry of methane on Cu-promoted Ni–ZrO2 catalysts and observed a limited stability of the CuNi alloy under relevant reaction conditions.

Collaboration


Dive into the Dmitry Zemlyanov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Penner

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar

Lukas Mayr

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge